Adaptive Fuzzy Practical Fixed-Time Tracking Control of Nonlinear Systems
This article investigates an adaptive practical fixed-time control strategy for the output tracking control of a class of strict feedback nonlinear systems. By utilizing a backstepping algorithm, finite-time Lyapunov stable theory, and fuzzy logic control, a novel adaptive practical fixed-time contr...
Saved in:
| Published in: | IEEE transactions on fuzzy systems Vol. 29; no. 3; pp. 664 - 673 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1063-6706, 1941-0034 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This article investigates an adaptive practical fixed-time control strategy for the output tracking control of a class of strict feedback nonlinear systems. By utilizing a backstepping algorithm, finite-time Lyapunov stable theory, and fuzzy logic control, a novel adaptive practical fixed-time controller is constructed. Fuzzy logic systems are introduced to approximate the unknown items of the system. Theoretical analysis proves that under the presented control strategy, the closed-loop system is practically fixed-time stable, and the tracking error converges to a small neighborhood of the origin within a fixed-time interval, in which the convergence time has no connection with the initial states of the system. In the meantime, all the signals of the closed-loop system are bounded. Finally, a numerical example is presented to indicate the feasibility and effectiveness of the proposed method. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1063-6706 1941-0034 |
| DOI: | 10.1109/TFUZZ.2019.2959972 |