Designing Multi-Task Convolutional Variational Autoencoder for Radio Tomographic Imaging
Radio tomographic imaging (RTI) emerges to model the environment and detect the passive targets by a wireless network. In this work, the received signal strength (RSS) measurements are collected from an uncalibrated network, and a multi-task convolutional variational autoencoder model is proposed to...
Uloženo v:
| Vydáno v: | IEEE transactions on circuits and systems. II, Express briefs Ročník 69; číslo 1; s. 219 - 223 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1549-7747, 1558-3791 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Radio tomographic imaging (RTI) emerges to model the environment and detect the passive targets by a wireless network. In this work, the received signal strength (RSS) measurements are collected from an uncalibrated network, and a multi-task convolutional variational autoencoder model is proposed to realize RTI. The presented model is trained end-to-end to denoise the RSS measurements, reconstruct the static tomographic images, estimate the parameters of the wireless network, and classify the measurement noise level, simultaneously. The multi-task variational learning strategy is able to improve the generalization of the model. Numerical experiments demonstrate the efficacy of our RTI method. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1549-7747 1558-3791 |
| DOI: | 10.1109/TCSII.2021.3081997 |