Quantum Approximate Optimization Algorithm Based Maximum Likelihood Detection
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices, where the quantum approximation optimization algorithm (QAOA) constitutes a promising candidate for demonstrating tangible quantum advantages based on NISQ devices. In this paper, we consider th...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on communications Jg. 70; H. 8; S. 5386 - 5400 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0090-6778, 1558-0857 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices, where the quantum approximation optimization algorithm (QAOA) constitutes a promising candidate for demonstrating tangible quantum advantages based on NISQ devices. In this paper, we consider the maximum likelihood (ML) detection problem of binary symbols transmitted over a multiple-input and multiple-output (MIMO) channel, where finding the optimal solution is exponentially hard using classical computers. Here, we apply the QAOA for the ML detection by encoding the problem of interest into a level-<inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> QAOA circuit having <inline-formula> <tex-math notation="LaTeX">2p </tex-math></inline-formula> variational parameters, which can be optimized by classical optimizers. This level-<inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> QAOA circuit is constructed by applying the prepared Hamiltonian to our problem and the initial Hamiltonian alternately in <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> consecutive rounds. More explicitly, we first encode the optimal solution of the ML detection problem into the ground state of a problem Hamiltonian. Using the quantum adiabatic evolution technique, we provide both analytical and numerical results for characterizing the evolution of the eigenvalues of the quantum system used for ML detection. Then, for level-1 QAOA circuits, we derive the analytical expressions of the expectation values of the QAOA and discuss the complexity of the QAOA based ML detector. Explicitly, we evaluate the computational complexity of the classical optimizer used and the storage requirement of simulating the QAOA. Finally, we evaluate the bit error rate (BER) of the QAOA based ML detector and compare it both to the classical ML detector and to the classical minimum mean squared error (MMSE) detector, demonstrating that the QAOA based ML detector is capable of approaching the performance of the classical ML detector. |
|---|---|
| AbstractList | Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices, where the quantum approximation optimization algorithm (QAOA) constitutes a promising candidate for demonstrating tangible quantum advantages based on NISQ devices. In this paper, we consider the maximum likelihood (ML) detection problem of binary symbols transmitted over a multiple-input and multiple-output (MIMO) channel, where finding the optimal solution is exponentially hard using classical computers. Here, we apply the QAOA for the ML detection by encoding the problem of interest into a level-<inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> QAOA circuit having <inline-formula> <tex-math notation="LaTeX">2p </tex-math></inline-formula> variational parameters, which can be optimized by classical optimizers. This level-<inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> QAOA circuit is constructed by applying the prepared Hamiltonian to our problem and the initial Hamiltonian alternately in <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> consecutive rounds. More explicitly, we first encode the optimal solution of the ML detection problem into the ground state of a problem Hamiltonian. Using the quantum adiabatic evolution technique, we provide both analytical and numerical results for characterizing the evolution of the eigenvalues of the quantum system used for ML detection. Then, for level-1 QAOA circuits, we derive the analytical expressions of the expectation values of the QAOA and discuss the complexity of the QAOA based ML detector. Explicitly, we evaluate the computational complexity of the classical optimizer used and the storage requirement of simulating the QAOA. Finally, we evaluate the bit error rate (BER) of the QAOA based ML detector and compare it both to the classical ML detector and to the classical minimum mean squared error (MMSE) detector, demonstrating that the QAOA based ML detector is capable of approaching the performance of the classical ML detector. Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices, where the quantum approximation optimization algorithm (QAOA) constitutes a promising candidate for demonstrating tangible quantum advantages based on NISQ devices. In this paper, we consider the maximum likelihood (ML) detection problem of binary symbols transmitted over a multiple-input and multiple-output (MIMO) channel, where finding the optimal solution is exponentially hard using classical computers. Here, we apply the QAOA for the ML detection by encoding the problem of interest into a level-[Formula Omitted] QAOA circuit having [Formula Omitted] variational parameters, which can be optimized by classical optimizers. This level-[Formula Omitted] QAOA circuit is constructed by applying the prepared Hamiltonian to our problem and the initial Hamiltonian alternately in [Formula Omitted] consecutive rounds. More explicitly, we first encode the optimal solution of the ML detection problem into the ground state of a problem Hamiltonian. Using the quantum adiabatic evolution technique, we provide both analytical and numerical results for characterizing the evolution of the eigenvalues of the quantum system used for ML detection. Then, for level-1 QAOA circuits, we derive the analytical expressions of the expectation values of the QAOA and discuss the complexity of the QAOA based ML detector. Explicitly, we evaluate the computational complexity of the classical optimizer used and the storage requirement of simulating the QAOA. Finally, we evaluate the bit error rate (BER) of the QAOA based ML detector and compare it both to the classical ML detector and to the classical minimum mean squared error (MMSE) detector, demonstrating that the QAOA based ML detector is capable of approaching the performance of the classical ML detector. |
| Author | Xiong, Yifeng Ng, Soon Xin Hanzo, Lajos Cui, Jingjing |
| Author_xml | – sequence: 1 givenname: Jingjing orcidid: 0000-0002-8850-358X surname: Cui fullname: Cui, Jingjing email: jingj.cui@soton.ac.uk organization: School of Electronics and Computer Science, University of Southampton, Southampton, U.K – sequence: 2 givenname: Yifeng orcidid: 0000-0002-4290-7116 surname: Xiong fullname: Xiong, Yifeng email: yifeng.xiong@soton.ac.uk organization: School of Electronics and Computer Science, University of Southampton, Southampton, U.K – sequence: 3 givenname: Soon Xin orcidid: 0000-0002-0930-7194 surname: Ng fullname: Ng, Soon Xin email: sxn@ecs.soton.ac.uk organization: School of Electronics and Computer Science, University of Southampton, Southampton, U.K – sequence: 4 givenname: Lajos orcidid: 0000-0002-2636-5214 surname: Hanzo fullname: Hanzo, Lajos email: lh@ecs.soton.ac.uk organization: School of Electronics and Computer Science, University of Southampton, Southampton, U.K |
| BookMark | eNp9kMtOwzAQRS1UJNrCD8AmEuuUsR3H9rKUp9SoQipry3Ec6pIXiSMBX0_6EAsWrGZzz9yZM0Gjqq4sQpcYZhiDvFkvVkkyI0DIjGLBiOAnaIwZEyEIxkdoDCAhjDkXZ2jSdVsAiIDSMUpeel35vgzmTdPWn67U3garxrvSfWvv6iqYF2916_ymDG51Z7Mg0UNqAJbu3RZuU9dZcGe9NbvwOTrNddHZi-OcoteH-_XiKVyuHp8X82VoiGQ-5JLFMdUcpyknJspISrnUUmaxTHWOTcq0yUkUGZFyLGMdydRaGgNmOXAMgk7R9WHvcPNHbzuvtnXfVkOlIhwopsNzfEiRQ8q0dde1NldNOzzYfikMaqdN7bWpnTZ11DZA4g9knN-b8K12xf_o1QF11trfLimAEsbpD7uPfS8 |
| CODEN | IECMBT |
| CitedBy_id | crossref_primary_10_1109_TCOMM_2024_3502667 crossref_primary_10_1109_TWC_2024_3450190 crossref_primary_10_1109_COMST_2024_3502762 crossref_primary_10_1007_s11128_025_04896_2 crossref_primary_10_1109_LWC_2024_3365874 crossref_primary_10_1109_TWC_2024_3383101 crossref_primary_10_1016_j_physrep_2024_03_002 crossref_primary_10_1109_ACCESS_2024_3413084 crossref_primary_10_1109_ACCESS_2025_3528443 crossref_primary_10_1016_j_physleta_2025_130541 crossref_primary_10_1109_TWC_2024_3523135 crossref_primary_10_1002_qute_202300262 crossref_primary_10_2514_1_J064518 |
| Cites_doi | 10.1109/IGSC48788.2019.8957201 10.1038/s41567-020-01105-y 10.1088/2058-9565/ab4eb5 10.22331/q-2018-08-06-79 10.1109/ACCESS.2019.2921522 10.26421/qic2.3-1 10.1109/ACCESS.2013.2259536 10.1088/2058-9565/ab8c2b 10.2200/s00585ed1v01y201407qmc008 10.1145/3149526.3149530 10.1038/s41598-019-43176-9 10.1063/1.1485725 10.1103/PhysRevA.94.022309 10.1007/BF01343193 10.1109/TCOMM.2020.2978071 10.3390/a12020034 10.1088/2058-9565/aab822 10.1038/s42254-021-00348-9 10.1090/S0002-9939-1959-0108732-6 10.1109/JSAC.2020.3007211 10.1103/PhysRevLett.89.057904 10.1109/MSP.2011.2178495 10.1088/2058-7058/12/4/23 10.1088/1367-2630/ab7a31 10.1007/s11128-020-02748-9 10.1109/SFCS.1994.365700 10.1119/1.1463744 10.1103/PhysRevX.10.021067 10.1007/BF01553893 10.1103/PhysRevA.93.062312 10.1038/ncomms5213 10.1109/ISIT.2019.8849710 10.1017/9781316995433 10.1143/PTP.56.1454 10.1109/TCOMM.2018.2803068 10.1145/237814.237866 10.1103/PhysRevA.97.022304 10.1103/RevModPhys.90.015002 10.1103/PhysRevA.95.062317 10.1137/080734479 10.1103/PhysRevLett.73.58 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TCOMM.2022.3185287 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0857 |
| EndPage | 5400 |
| ExternalDocumentID | 10_1109_TCOMM_2022_3185287 9803257 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: European Research Council’s Advanced Fellow Grant QuantCom grantid: 789028 funderid: 10.13039/501100000781 – fundername: Engineering and Physical Sciences Research Council projects grantid: EP/P034284/1; EP/P003990/1 (COALESCE) funderid: 10.13039/501100000266 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 ZCA ZCG AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c295t-795663a71bb72c4d2b379a99d69baf1cb5acf244c8b7196a49bee36015f071083 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000846884500032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0090-6778 |
| IngestDate | Mon Jun 30 10:19:03 EDT 2025 Tue Nov 18 20:59:39 EST 2025 Sat Nov 29 04:08:24 EST 2025 Wed Aug 27 02:23:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-795663a71bb72c4d2b379a99d69baf1cb5acf244c8b7196a49bee36015f071083 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2636-5214 0000-0002-8850-358X 0000-0002-0930-7194 0000-0002-4290-7116 |
| PQID | 2703134037 |
| PQPubID | 85472 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2703134037 crossref_primary_10_1109_TCOMM_2022_3185287 ieee_primary_9803257 crossref_citationtrail_10_1109_TCOMM_2022_3185287 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on communications |
| PublicationTitleAbbrev | TCOMM |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 Aaronson (ref44) 2019 ref57 ref12 ref15 ref53 ref52 ref11 ref55 ref10 ref17 ref19 Lloyd (ref25) 2018 ref18 Yen-Yu Lin (ref28) 2016 ref51 Farhi (ref27) 2014 ref50 ref46 ref45 Bharti (ref16) 2021 ref48 ref47 ref41 ref43 (ref1) 2019 Farhi (ref21) 2016 Crooks (ref35) 2018 ref49 Bravyi (ref42) 2020 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref39 Farhi (ref56) 2020 Farhi (ref59) 2019 Farhi (ref23) 2020 ref24 ref26 ref22 Farhi (ref40) 2000 Yao (ref38); 107 Gambetta (ref14) 2020 ref29 Farhi (ref20) 2014 Powell (ref54) 2007; 43 Abraham (ref58) 2019 |
| References_xml | – ident: ref36 doi: 10.1109/IGSC48788.2019.8957201 – ident: ref24 doi: 10.1038/s41567-020-01105-y – ident: ref18 doi: 10.1088/2058-9565/ab4eb5 – ident: ref13 doi: 10.22331/q-2018-08-06-79 – ident: ref4 doi: 10.1109/ACCESS.2019.2921522 – ident: ref8 doi: 10.26421/qic2.3-1 – ident: ref11 doi: 10.1109/ACCESS.2013.2259536 – year: 2014 ident: ref27 article-title: A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem publication-title: arXiv:1412.6062 – ident: ref37 doi: 10.1088/2058-9565/ab8c2b – ident: ref46 doi: 10.2200/s00585ed1v01y201407qmc008 – ident: ref32 doi: 10.1145/3149526.3149530 – volume-title: Quantum Computing Lecture year: 2019 ident: ref44 – ident: ref57 doi: 10.1038/s41598-019-43176-9 – ident: ref52 doi: 10.1063/1.1485725 – ident: ref30 doi: 10.1103/PhysRevA.94.022309 – ident: ref43 doi: 10.1007/BF01343193 – ident: ref7 doi: 10.1109/TCOMM.2020.2978071 – volume: 107 start-page: 605 volume-title: Proc. 1st Math. Sci. Mach. Learn. Conf. ident: ref38 article-title: Policy gradient based quantum approximate optimization algorithm – year: 2020 ident: ref56 article-title: The quantum approximate optimization algorithm needs to see the whole graph: Worst case examples publication-title: arXiv:2005.08747 – year: 2000 ident: ref40 article-title: Quantum computation by adiabatic evolution publication-title: arXiv:quant-ph/0001106 – year: 2020 ident: ref23 article-title: The quantum approximate optimization algorithm needs to see the whole graph: A typical case publication-title: arXiv:2004.09002 – year: 2019 ident: ref59 article-title: The quantum approximate optimization algorithm and the sherrington-kirkpatrick model at infinite size publication-title: arXiv:1910.08187 – ident: ref22 doi: 10.3390/a12020034 – year: 2016 ident: ref21 article-title: Quantum supremacy through the quantum approximate optimization algorithm publication-title: arXiv:1602.07674 – ident: ref15 doi: 10.1088/2058-9565/aab822 – ident: ref19 doi: 10.1038/s42254-021-00348-9 – year: 2018 ident: ref35 article-title: Performance of the quantum approximate optimization algorithm on the maximum cut problem publication-title: arXiv:1811.08419 – ident: ref49 doi: 10.1090/S0002-9939-1959-0108732-6 – ident: ref3 doi: 10.1109/JSAC.2020.3007211 – ident: ref51 doi: 10.1103/PhysRevLett.89.057904 – volume-title: Study on New Radio (NR) to Support Non-Terrestrial Networks (Release 15) year: 2019 ident: ref1 – year: 2020 ident: ref42 article-title: Hybrid quantum-classical algorithms for approximate graph coloring publication-title: arXiv:2011.13420 – ident: ref2 doi: 10.1109/MSP.2011.2178495 – year: 2016 ident: ref28 article-title: Performance of QAOA on typical instances of constraint satisfaction problems with bounded degree publication-title: arXiv:1601.01744 – ident: ref41 doi: 10.1088/2058-7058/12/4/23 – volume-title: IBM’s Roadmap For Scaling Quantum Technology year: 2020 ident: ref14 – ident: ref53 doi: 10.1088/1367-2630/ab7a31 – ident: ref26 doi: 10.1007/s11128-020-02748-9 – ident: ref9 doi: 10.1109/SFCS.1994.365700 – ident: ref6 doi: 10.1119/1.1463744 – ident: ref34 doi: 10.1103/PhysRevX.10.021067 – year: 2018 ident: ref25 article-title: Quantum approximate optimization is computationally universal publication-title: arXiv:1812.11075 – ident: ref5 doi: 10.1007/BF01553893 – ident: ref39 doi: 10.1103/PhysRevA.93.062312 – ident: ref17 doi: 10.1038/ncomms5213 – ident: ref29 doi: 10.1109/ISIT.2019.8849710 – ident: ref45 doi: 10.1017/9781316995433 – ident: ref50 doi: 10.1143/PTP.56.1454 – ident: ref12 doi: 10.1109/TCOMM.2018.2803068 – ident: ref10 doi: 10.1145/237814.237866 – year: 2021 ident: ref16 article-title: Noisy intermediate-scale quantum (NISQ) algorithms publication-title: arXiv:2101.08448 – ident: ref33 doi: 10.1103/PhysRevA.97.022304 – ident: ref48 doi: 10.1103/RevModPhys.90.015002 – volume: 43 start-page: 170 issue: 5 year: 2007 ident: ref54 article-title: A view of algorithms for optimization without derivatives publication-title: Math. Today-Bull. Inst. Math. Appl. – year: 2014 ident: ref20 article-title: A quantum approximate optimization algorithm publication-title: arXiv:1411.4028 – ident: ref31 doi: 10.1103/PhysRevA.95.062317 – ident: ref47 doi: 10.1137/080734479 – ident: ref55 doi: 10.1103/PhysRevLett.73.58 – volume-title: Qiskit: An open-source framework for quantum computing year: 2019 ident: ref58 |
| SSID | ssj0004033 |
| Score | 2.547869 |
| Snippet | Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices, where the quantum approximation optimization... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5386 |
| SubjectTerms | Algorithms Bit error rate bit error rate (BER) Circuits Complexity Computers Detectors Eigenvalues Error detection Evolution maximum likelihood (ML) detection Optimization Optimization algorithms quantum approximation optimization algorithm (QAOA) Quantum computing Quantum technology Quantum theory Qubit Sensors Stationary state Symbols |
| Title | Quantum Approximate Optimization Algorithm Based Maximum Likelihood Detection |
| URI | https://ieeexplore.ieee.org/document/9803257 https://www.proquest.com/docview/2703134037 |
| Volume | 70 |
| WOSCitedRecordID | wos000846884500032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0857 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004033 issn: 0090-6778 databaseCode: RIE dateStart: 19720101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4A8aAHX2hE0fTgTQulW9jdI6LEg4AmmHBrtrtbbeRhoDX-fGeXgiQaE289zG6amdmdmXa-bwAuhZSUBVy4gWmhCriKXaY95qIrMD-mGIKVssMmaL_PRiP-WIDrNRZGa22bz3TNPNp_-WomM_OprM6ZR9DFilCktLXEan1jID2SM06adnbKVgAZj9eHnUGvh6Wg79csVti0z20EITtV5cdVbONLd-9_b7YPu3ke6bSXhj-Agp4ews4Gu2AZek8Zqi2bOG3DG_6ZYG6qnQFeEZMce-m0xy-zeZK-TpwbDGbK6QmUwgUPyZseJ4bw2LnVqW3Wmh7Bc_du2Ll38-kJrvR5M0VtY6ZGBG1EEfVloPyIUC44Vy0eibgho6aQMQZ3ySKKx1AEPNKaYH3WjE3awcgxlKazqT4BJ-aSKCK5bCgZCMV4hHUXURIjG5cBYRVorNQZypxa3Ey4GIe2xPB4aE0QGhOEuQkqcLVe874k1vhTumyUvpbM9V2B6spqYX72FqFvKPkJ-gM9_X3VGWybvZdtfFUopfNMn8OW_EiTxfzCutUXi2fJ_w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4ScCBN2IwoAduUOiajiTHMUBDrAOkIXGr0iSFij3Q1iF-Pk6WDSQQErceHKWyndhu_X0GOBJSUhZx4UemhSriKvOZDpiPrsDCjGIIVsoOm6CtFnt64vczcDLFwmitbfOZPjWP9l--6suR-VR2xllA0MVmYd5MznJorS8UZEAc56RpaKdsApEJ-Fm7fhfHWAyG4alFC5sGum9hyM5V-XEZ2whzvfq_d1uDFZdJerWx6ddhRvc2YPkbv-AmxA8jVNyo69UMc_hHjtmp9u7wkug69KVX6zz3B3nx0vUuMJwpLxYohQua-avu5Iby2LvUhW3X6m3B4_VVu97w3fwEX4a8WqC-MVcjglbSlIYyUmFKKBecq3Oeiqwi06qQGYZ3yVKKB1FEPNWaYIVWzUziwcg2zPX6Pb0DXsYlUURyWVEyEorxFCsvoiTGNi4jwkpQmagzkY5c3My46CS2yAh4Yk2QGBMkzgQlOJ6ueRtTa_wpvWmUPpV0-i5BeWK1xJ2-YRIaUn6C_kB3f191CIuNdtxMmjet2z1YMvuMm_rKMFcMRnofFuR7kQ8HB9bFPgE8GM1I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Approximate+Optimization+Algorithm+Based+Maximum+Likelihood+Detection&rft.jtitle=IEEE+transactions+on+communications&rft.au=Cui%2C+Jingjing&rft.au=Xiong%2C+Yifeng&rft.au=Ng%2C+Soon+Xin&rft.au=Hanzo%2C+Lajos&rft.date=2022-08-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=70&rft.issue=8&rft.spage=5386&rft.epage=5400&rft_id=info:doi/10.1109%2FTCOMM.2022.3185287&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2022_3185287 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon |