Quantum Approximate Optimization Algorithm Based Maximum Likelihood Detection

Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices, where the quantum approximation optimization algorithm (QAOA) constitutes a promising candidate for demonstrating tangible quantum advantages based on NISQ devices. In this paper, we consider th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications Jg. 70; H. 8; S. 5386 - 5400
Hauptverfasser: Cui, Jingjing, Xiong, Yifeng, Ng, Soon Xin, Hanzo, Lajos
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0090-6778, 1558-0857
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices, where the quantum approximation optimization algorithm (QAOA) constitutes a promising candidate for demonstrating tangible quantum advantages based on NISQ devices. In this paper, we consider the maximum likelihood (ML) detection problem of binary symbols transmitted over a multiple-input and multiple-output (MIMO) channel, where finding the optimal solution is exponentially hard using classical computers. Here, we apply the QAOA for the ML detection by encoding the problem of interest into a level-<inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> QAOA circuit having <inline-formula> <tex-math notation="LaTeX">2p </tex-math></inline-formula> variational parameters, which can be optimized by classical optimizers. This level-<inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> QAOA circuit is constructed by applying the prepared Hamiltonian to our problem and the initial Hamiltonian alternately in <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> consecutive rounds. More explicitly, we first encode the optimal solution of the ML detection problem into the ground state of a problem Hamiltonian. Using the quantum adiabatic evolution technique, we provide both analytical and numerical results for characterizing the evolution of the eigenvalues of the quantum system used for ML detection. Then, for level-1 QAOA circuits, we derive the analytical expressions of the expectation values of the QAOA and discuss the complexity of the QAOA based ML detector. Explicitly, we evaluate the computational complexity of the classical optimizer used and the storage requirement of simulating the QAOA. Finally, we evaluate the bit error rate (BER) of the QAOA based ML detector and compare it both to the classical ML detector and to the classical minimum mean squared error (MMSE) detector, demonstrating that the QAOA based ML detector is capable of approaching the performance of the classical ML detector.
AbstractList Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices, where the quantum approximation optimization algorithm (QAOA) constitutes a promising candidate for demonstrating tangible quantum advantages based on NISQ devices. In this paper, we consider the maximum likelihood (ML) detection problem of binary symbols transmitted over a multiple-input and multiple-output (MIMO) channel, where finding the optimal solution is exponentially hard using classical computers. Here, we apply the QAOA for the ML detection by encoding the problem of interest into a level-<inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> QAOA circuit having <inline-formula> <tex-math notation="LaTeX">2p </tex-math></inline-formula> variational parameters, which can be optimized by classical optimizers. This level-<inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> QAOA circuit is constructed by applying the prepared Hamiltonian to our problem and the initial Hamiltonian alternately in <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> consecutive rounds. More explicitly, we first encode the optimal solution of the ML detection problem into the ground state of a problem Hamiltonian. Using the quantum adiabatic evolution technique, we provide both analytical and numerical results for characterizing the evolution of the eigenvalues of the quantum system used for ML detection. Then, for level-1 QAOA circuits, we derive the analytical expressions of the expectation values of the QAOA and discuss the complexity of the QAOA based ML detector. Explicitly, we evaluate the computational complexity of the classical optimizer used and the storage requirement of simulating the QAOA. Finally, we evaluate the bit error rate (BER) of the QAOA based ML detector and compare it both to the classical ML detector and to the classical minimum mean squared error (MMSE) detector, demonstrating that the QAOA based ML detector is capable of approaching the performance of the classical ML detector.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices, where the quantum approximation optimization algorithm (QAOA) constitutes a promising candidate for demonstrating tangible quantum advantages based on NISQ devices. In this paper, we consider the maximum likelihood (ML) detection problem of binary symbols transmitted over a multiple-input and multiple-output (MIMO) channel, where finding the optimal solution is exponentially hard using classical computers. Here, we apply the QAOA for the ML detection by encoding the problem of interest into a level-[Formula Omitted] QAOA circuit having [Formula Omitted] variational parameters, which can be optimized by classical optimizers. This level-[Formula Omitted] QAOA circuit is constructed by applying the prepared Hamiltonian to our problem and the initial Hamiltonian alternately in [Formula Omitted] consecutive rounds. More explicitly, we first encode the optimal solution of the ML detection problem into the ground state of a problem Hamiltonian. Using the quantum adiabatic evolution technique, we provide both analytical and numerical results for characterizing the evolution of the eigenvalues of the quantum system used for ML detection. Then, for level-1 QAOA circuits, we derive the analytical expressions of the expectation values of the QAOA and discuss the complexity of the QAOA based ML detector. Explicitly, we evaluate the computational complexity of the classical optimizer used and the storage requirement of simulating the QAOA. Finally, we evaluate the bit error rate (BER) of the QAOA based ML detector and compare it both to the classical ML detector and to the classical minimum mean squared error (MMSE) detector, demonstrating that the QAOA based ML detector is capable of approaching the performance of the classical ML detector.
Author Xiong, Yifeng
Ng, Soon Xin
Hanzo, Lajos
Cui, Jingjing
Author_xml – sequence: 1
  givenname: Jingjing
  orcidid: 0000-0002-8850-358X
  surname: Cui
  fullname: Cui, Jingjing
  email: jingj.cui@soton.ac.uk
  organization: School of Electronics and Computer Science, University of Southampton, Southampton, U.K
– sequence: 2
  givenname: Yifeng
  orcidid: 0000-0002-4290-7116
  surname: Xiong
  fullname: Xiong, Yifeng
  email: yifeng.xiong@soton.ac.uk
  organization: School of Electronics and Computer Science, University of Southampton, Southampton, U.K
– sequence: 3
  givenname: Soon Xin
  orcidid: 0000-0002-0930-7194
  surname: Ng
  fullname: Ng, Soon Xin
  email: sxn@ecs.soton.ac.uk
  organization: School of Electronics and Computer Science, University of Southampton, Southampton, U.K
– sequence: 4
  givenname: Lajos
  orcidid: 0000-0002-2636-5214
  surname: Hanzo
  fullname: Hanzo, Lajos
  email: lh@ecs.soton.ac.uk
  organization: School of Electronics and Computer Science, University of Southampton, Southampton, U.K
BookMark eNp9kMtOwzAQRS1UJNrCD8AmEuuUsR3H9rKUp9SoQipry3Ec6pIXiSMBX0_6EAsWrGZzz9yZM0Gjqq4sQpcYZhiDvFkvVkkyI0DIjGLBiOAnaIwZEyEIxkdoDCAhjDkXZ2jSdVsAiIDSMUpeel35vgzmTdPWn67U3garxrvSfWvv6iqYF2916_ymDG51Z7Mg0UNqAJbu3RZuU9dZcGe9NbvwOTrNddHZi-OcoteH-_XiKVyuHp8X82VoiGQ-5JLFMdUcpyknJspISrnUUmaxTHWOTcq0yUkUGZFyLGMdydRaGgNmOXAMgk7R9WHvcPNHbzuvtnXfVkOlIhwopsNzfEiRQ8q0dde1NldNOzzYfikMaqdN7bWpnTZ11DZA4g9knN-b8K12xf_o1QF11trfLimAEsbpD7uPfS8
CODEN IECMBT
CitedBy_id crossref_primary_10_1109_TCOMM_2024_3502667
crossref_primary_10_1109_TWC_2024_3450190
crossref_primary_10_1109_COMST_2024_3502762
crossref_primary_10_1007_s11128_025_04896_2
crossref_primary_10_1109_LWC_2024_3365874
crossref_primary_10_1109_TWC_2024_3383101
crossref_primary_10_1016_j_physrep_2024_03_002
crossref_primary_10_1109_ACCESS_2024_3413084
crossref_primary_10_1109_ACCESS_2025_3528443
crossref_primary_10_1016_j_physleta_2025_130541
crossref_primary_10_1109_TWC_2024_3523135
crossref_primary_10_1002_qute_202300262
crossref_primary_10_2514_1_J064518
Cites_doi 10.1109/IGSC48788.2019.8957201
10.1038/s41567-020-01105-y
10.1088/2058-9565/ab4eb5
10.22331/q-2018-08-06-79
10.1109/ACCESS.2019.2921522
10.26421/qic2.3-1
10.1109/ACCESS.2013.2259536
10.1088/2058-9565/ab8c2b
10.2200/s00585ed1v01y201407qmc008
10.1145/3149526.3149530
10.1038/s41598-019-43176-9
10.1063/1.1485725
10.1103/PhysRevA.94.022309
10.1007/BF01343193
10.1109/TCOMM.2020.2978071
10.3390/a12020034
10.1088/2058-9565/aab822
10.1038/s42254-021-00348-9
10.1090/S0002-9939-1959-0108732-6
10.1109/JSAC.2020.3007211
10.1103/PhysRevLett.89.057904
10.1109/MSP.2011.2178495
10.1088/2058-7058/12/4/23
10.1088/1367-2630/ab7a31
10.1007/s11128-020-02748-9
10.1109/SFCS.1994.365700
10.1119/1.1463744
10.1103/PhysRevX.10.021067
10.1007/BF01553893
10.1103/PhysRevA.93.062312
10.1038/ncomms5213
10.1109/ISIT.2019.8849710
10.1017/9781316995433
10.1143/PTP.56.1454
10.1109/TCOMM.2018.2803068
10.1145/237814.237866
10.1103/PhysRevA.97.022304
10.1103/RevModPhys.90.015002
10.1103/PhysRevA.95.062317
10.1137/080734479
10.1103/PhysRevLett.73.58
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCOMM.2022.3185287
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0857
EndPage 5400
ExternalDocumentID 10_1109_TCOMM_2022_3185287
9803257
Genre orig-research
GrantInformation_xml – fundername: European Research Council’s Advanced Fellow Grant QuantCom
  grantid: 789028
  funderid: 10.13039/501100000781
– fundername: Engineering and Physical Sciences Research Council projects
  grantid: EP/P034284/1; EP/P003990/1 (COALESCE)
  funderid: 10.13039/501100000266
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-795663a71bb72c4d2b379a99d69baf1cb5acf244c8b7196a49bee36015f071083
IEDL.DBID RIE
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000846884500032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0090-6778
IngestDate Mon Jun 30 10:19:03 EDT 2025
Tue Nov 18 20:59:39 EST 2025
Sat Nov 29 04:08:24 EST 2025
Wed Aug 27 02:23:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-795663a71bb72c4d2b379a99d69baf1cb5acf244c8b7196a49bee36015f071083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2636-5214
0000-0002-8850-358X
0000-0002-0930-7194
0000-0002-4290-7116
PQID 2703134037
PQPubID 85472
PageCount 15
ParticipantIDs proquest_journals_2703134037
crossref_primary_10_1109_TCOMM_2022_3185287
ieee_primary_9803257
crossref_citationtrail_10_1109_TCOMM_2022_3185287
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Aaronson (ref44) 2019
ref57
ref12
ref15
ref53
ref52
ref11
ref55
ref10
ref17
ref19
Lloyd (ref25) 2018
ref18
Yen-Yu Lin (ref28) 2016
ref51
Farhi (ref27) 2014
ref50
ref46
ref45
Bharti (ref16) 2021
ref48
ref47
ref41
ref43
(ref1) 2019
Farhi (ref21) 2016
Crooks (ref35) 2018
ref49
Bravyi (ref42) 2020
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
Farhi (ref56) 2020
Farhi (ref59) 2019
Farhi (ref23) 2020
ref24
ref26
ref22
Farhi (ref40) 2000
Yao (ref38); 107
Gambetta (ref14) 2020
ref29
Farhi (ref20) 2014
Powell (ref54) 2007; 43
Abraham (ref58) 2019
References_xml – ident: ref36
  doi: 10.1109/IGSC48788.2019.8957201
– ident: ref24
  doi: 10.1038/s41567-020-01105-y
– ident: ref18
  doi: 10.1088/2058-9565/ab4eb5
– ident: ref13
  doi: 10.22331/q-2018-08-06-79
– ident: ref4
  doi: 10.1109/ACCESS.2019.2921522
– ident: ref8
  doi: 10.26421/qic2.3-1
– ident: ref11
  doi: 10.1109/ACCESS.2013.2259536
– year: 2014
  ident: ref27
  article-title: A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem
  publication-title: arXiv:1412.6062
– ident: ref37
  doi: 10.1088/2058-9565/ab8c2b
– ident: ref46
  doi: 10.2200/s00585ed1v01y201407qmc008
– ident: ref32
  doi: 10.1145/3149526.3149530
– volume-title: Quantum Computing Lecture
  year: 2019
  ident: ref44
– ident: ref57
  doi: 10.1038/s41598-019-43176-9
– ident: ref52
  doi: 10.1063/1.1485725
– ident: ref30
  doi: 10.1103/PhysRevA.94.022309
– ident: ref43
  doi: 10.1007/BF01343193
– ident: ref7
  doi: 10.1109/TCOMM.2020.2978071
– volume: 107
  start-page: 605
  volume-title: Proc. 1st Math. Sci. Mach. Learn. Conf.
  ident: ref38
  article-title: Policy gradient based quantum approximate optimization algorithm
– year: 2020
  ident: ref56
  article-title: The quantum approximate optimization algorithm needs to see the whole graph: Worst case examples
  publication-title: arXiv:2005.08747
– year: 2000
  ident: ref40
  article-title: Quantum computation by adiabatic evolution
  publication-title: arXiv:quant-ph/0001106
– year: 2020
  ident: ref23
  article-title: The quantum approximate optimization algorithm needs to see the whole graph: A typical case
  publication-title: arXiv:2004.09002
– year: 2019
  ident: ref59
  article-title: The quantum approximate optimization algorithm and the sherrington-kirkpatrick model at infinite size
  publication-title: arXiv:1910.08187
– ident: ref22
  doi: 10.3390/a12020034
– year: 2016
  ident: ref21
  article-title: Quantum supremacy through the quantum approximate optimization algorithm
  publication-title: arXiv:1602.07674
– ident: ref15
  doi: 10.1088/2058-9565/aab822
– ident: ref19
  doi: 10.1038/s42254-021-00348-9
– year: 2018
  ident: ref35
  article-title: Performance of the quantum approximate optimization algorithm on the maximum cut problem
  publication-title: arXiv:1811.08419
– ident: ref49
  doi: 10.1090/S0002-9939-1959-0108732-6
– ident: ref3
  doi: 10.1109/JSAC.2020.3007211
– ident: ref51
  doi: 10.1103/PhysRevLett.89.057904
– volume-title: Study on New Radio (NR) to Support Non-Terrestrial Networks (Release 15)
  year: 2019
  ident: ref1
– year: 2020
  ident: ref42
  article-title: Hybrid quantum-classical algorithms for approximate graph coloring
  publication-title: arXiv:2011.13420
– ident: ref2
  doi: 10.1109/MSP.2011.2178495
– year: 2016
  ident: ref28
  article-title: Performance of QAOA on typical instances of constraint satisfaction problems with bounded degree
  publication-title: arXiv:1601.01744
– ident: ref41
  doi: 10.1088/2058-7058/12/4/23
– volume-title: IBM’s Roadmap For Scaling Quantum Technology
  year: 2020
  ident: ref14
– ident: ref53
  doi: 10.1088/1367-2630/ab7a31
– ident: ref26
  doi: 10.1007/s11128-020-02748-9
– ident: ref9
  doi: 10.1109/SFCS.1994.365700
– ident: ref6
  doi: 10.1119/1.1463744
– ident: ref34
  doi: 10.1103/PhysRevX.10.021067
– year: 2018
  ident: ref25
  article-title: Quantum approximate optimization is computationally universal
  publication-title: arXiv:1812.11075
– ident: ref5
  doi: 10.1007/BF01553893
– ident: ref39
  doi: 10.1103/PhysRevA.93.062312
– ident: ref17
  doi: 10.1038/ncomms5213
– ident: ref29
  doi: 10.1109/ISIT.2019.8849710
– ident: ref45
  doi: 10.1017/9781316995433
– ident: ref50
  doi: 10.1143/PTP.56.1454
– ident: ref12
  doi: 10.1109/TCOMM.2018.2803068
– ident: ref10
  doi: 10.1145/237814.237866
– year: 2021
  ident: ref16
  article-title: Noisy intermediate-scale quantum (NISQ) algorithms
  publication-title: arXiv:2101.08448
– ident: ref33
  doi: 10.1103/PhysRevA.97.022304
– ident: ref48
  doi: 10.1103/RevModPhys.90.015002
– volume: 43
  start-page: 170
  issue: 5
  year: 2007
  ident: ref54
  article-title: A view of algorithms for optimization without derivatives
  publication-title: Math. Today-Bull. Inst. Math. Appl.
– year: 2014
  ident: ref20
  article-title: A quantum approximate optimization algorithm
  publication-title: arXiv:1411.4028
– ident: ref31
  doi: 10.1103/PhysRevA.95.062317
– ident: ref47
  doi: 10.1137/080734479
– ident: ref55
  doi: 10.1103/PhysRevLett.73.58
– volume-title: Qiskit: An open-source framework for quantum computing
  year: 2019
  ident: ref58
SSID ssj0004033
Score 2.547869
Snippet Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices, where the quantum approximation optimization...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5386
SubjectTerms Algorithms
Bit error rate
bit error rate (BER)
Circuits
Complexity
Computers
Detectors
Eigenvalues
Error detection
Evolution
maximum likelihood (ML) detection
Optimization
Optimization algorithms
quantum approximation optimization algorithm (QAOA)
Quantum computing
Quantum technology
Quantum theory
Qubit
Sensors
Stationary state
Symbols
Title Quantum Approximate Optimization Algorithm Based Maximum Likelihood Detection
URI https://ieeexplore.ieee.org/document/9803257
https://www.proquest.com/docview/2703134037
Volume 70
WOSCitedRecordID wos000846884500032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0857
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004033
  issn: 0090-6778
  databaseCode: RIE
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4A8aAHX2hE0fTgTQulW9jdI6LEg4AmmHBrtrtbbeRhoDX-fGeXgiQaE289zG6amdmdmXa-bwAuhZSUBVy4gWmhCriKXaY95qIrMD-mGIKVssMmaL_PRiP-WIDrNRZGa22bz3TNPNp_-WomM_OprM6ZR9DFilCktLXEan1jID2SM06adnbKVgAZj9eHnUGvh6Wg79csVti0z20EITtV5cdVbONLd-9_b7YPu3ke6bSXhj-Agp4ews4Gu2AZek8Zqi2bOG3DG_6ZYG6qnQFeEZMce-m0xy-zeZK-TpwbDGbK6QmUwgUPyZseJ4bw2LnVqW3Wmh7Bc_du2Ll38-kJrvR5M0VtY6ZGBG1EEfVloPyIUC44Vy0eibgho6aQMQZ3ySKKx1AEPNKaYH3WjE3awcgxlKazqT4BJ-aSKCK5bCgZCMV4hHUXURIjG5cBYRVorNQZypxa3Ey4GIe2xPB4aE0QGhOEuQkqcLVe874k1vhTumyUvpbM9V2B6spqYX72FqFvKPkJ-gM9_X3VGWybvZdtfFUopfNMn8OW_EiTxfzCutUXi2fJ_w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4ScCBN2IwoAduUOiajiTHMUBDrAOkIXGr0iSFij3Q1iF-Pk6WDSQQErceHKWyndhu_X0GOBJSUhZx4UemhSriKvOZDpiPrsDCjGIIVsoOm6CtFnt64vczcDLFwmitbfOZPjWP9l--6suR-VR2xllA0MVmYd5MznJorS8UZEAc56RpaKdsApEJ-Fm7fhfHWAyG4alFC5sGum9hyM5V-XEZ2whzvfq_d1uDFZdJerWx6ddhRvc2YPkbv-AmxA8jVNyo69UMc_hHjtmp9u7wkug69KVX6zz3B3nx0vUuMJwpLxYohQua-avu5Iby2LvUhW3X6m3B4_VVu97w3fwEX4a8WqC-MVcjglbSlIYyUmFKKBecq3Oeiqwi06qQGYZ3yVKKB1FEPNWaYIVWzUziwcg2zPX6Pb0DXsYlUURyWVEyEorxFCsvoiTGNi4jwkpQmagzkY5c3My46CS2yAh4Yk2QGBMkzgQlOJ6ueRtTa_wpvWmUPpV0-i5BeWK1xJ2-YRIaUn6C_kB3f191CIuNdtxMmjet2z1YMvuMm_rKMFcMRnofFuR7kQ8HB9bFPgE8GM1I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Approximate+Optimization+Algorithm+Based+Maximum+Likelihood+Detection&rft.jtitle=IEEE+transactions+on+communications&rft.au=Cui%2C+Jingjing&rft.au=Xiong%2C+Yifeng&rft.au=Ng%2C+Soon+Xin&rft.au=Hanzo%2C+Lajos&rft.date=2022-08-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=70&rft.issue=8&rft.spage=5386&rft.epage=5400&rft_id=info:doi/10.1109%2FTCOMM.2022.3185287&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2022_3185287
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon