Underdetermined Convolutive Source Separation Using GEM-MU With Variational Approximated Optimum Model Order NMF2D

An unsupervised machine learning algorithm based on nonnegative matrix factor Two-dimensional deconvolution (NMF2D) with approximated optimum model order is proposed. The proposed algorithm adapted under the hybrid framework that combines the generalized EM algorithm with multiplicative update. As t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE/ACM transactions on audio, speech, and language processing Ročník 25; číslo 1; s. 35 - 49
Hlavní autoři: Al-Tmeme, Ahmed, Woo, Wai Lok, Dlay, Satnam Singh, Gao, Bin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2329-9290, 2329-9304
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:An unsupervised machine learning algorithm based on nonnegative matrix factor Two-dimensional deconvolution (NMF2D) with approximated optimum model order is proposed. The proposed algorithm adapted under the hybrid framework that combines the generalized EM algorithm with multiplicative update. As the number of parameters in the NMF2D grows exponentially the number of frequency basis increases linearly, the issues of model-order fitness, initialization, and parameters estimation become ever more critical. This paper proposes a variational Bayesian method to optimize the number of components in the NMF2D by using the Gamma-Exponential process as the observation-latent model. In addition, it is shown that the proposed Gamma-Exponential process can be used to initialize the NMF2D parameters. Finally, the paper investigates the issue and advantages of using different window length. Experimental results for the synthetic convolutive mixtures and live recordings verify the competence of the proposed algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2329-9290
2329-9304
DOI:10.1109/TASLP.2016.2620600