Efficiency Enhancement for Underwater Adaptive Modulation and Coding Systems: Via Sparse Principal Component Analysis

In this letter, to explore key channel state information (CSI) as a more efficient switching metric in the task of underwater adaptive modulation and coding (AMC), a sparse principal component analysis (SPCA) based approach is proposed from the perspective of statistical analysis plus machine learni...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE communications letters Ročník 24; číslo 8; s. 1808 - 1811
Hlavní autoři: Huang, Lihuan, Zhang, Qunfei, Zhang, Lifan, Shi, Juan, Zhang, Lingling
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1089-7798, 1558-2558
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this letter, to explore key channel state information (CSI) as a more efficient switching metric in the task of underwater adaptive modulation and coding (AMC), a sparse principal component analysis (SPCA) based approach is proposed from the perspective of statistical analysis plus machine learning (ML). This data-driven sparse learning method can offer significant system efficiency enhancement in the procedures of both channel estimation and communication scheme switching. By leveraging a dataset that contains real-world channel measurements collected from three field experiments, simulations demonstrate the effectiveness of the proposed scheme.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2020.2990188