Simulation-Based Electric Vehicle Sustainable Routing with Time-Dependent Stochastic Information

We propose a routing method for electric vehicles that finds a route with minimal expected travel time in time-dependent stochastic networks. The method first estimates whether the vehicle can reach the destination with the current battery level and selects potential reasonable charging stations if...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sustainability Ročník 12; číslo 6; s. 2464
Hlavní autoři: Li, Xinran, Kan, Haoxuan, Hua, Xuedong, Wang, Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 20.03.2020
Témata:
ISSN:2071-1050, 2071-1050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose a routing method for electric vehicles that finds a route with minimal expected travel time in time-dependent stochastic networks. The method first estimates whether the vehicle can reach the destination with the current battery level and selects potential reasonable charging stations if needed. Then, the route-search problem is formulated as a shortest path problem with time-dependent stochastic disruptions, using a Markov decision process. The shortest path problem is solved by an approximate dynamic programming algorithm to improve calculation efficiency in complex networks. Several simulation cases and a scenario-based example are given to prove the validity of the method.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2071-1050
2071-1050
DOI:10.3390/su12062464