Functional Iteration in-Flight Alignment Method for Projectiles MSINS
In-flight alignment is the basis for projectile microstrap-down inertial navigation system (MSINS) to accurate navigation. Due to high dynamic and small space constraints of projectiles, MSINS with antihigh overload and low-precision is usually used, which makes it difficult to achieve initial align...
Saved in:
| Published in: | IEEE/ASME transactions on mechatronics Vol. 27; no. 5; pp. 2887 - 2896 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1083-4435, 1941-014X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In-flight alignment is the basis for projectile microstrap-down inertial navigation system (MSINS) to accurate navigation. Due to high dynamic and small space constraints of projectiles, MSINS with antihigh overload and low-precision is usually used, which makes it difficult to achieve initial alignment in flight. Hence, this article proposes a global navigation satellite system (GNSS) aided MSINS in-flight alignment method based on functional iteration. The Legendre polynomials integral recursive model is derived and functional iteration alignment scheme is constructed. The simulation results show that the alignment precision of the proposed method is improved by more than 18% compared with the traditional optimization-based alignment optimization-based alignment (OBA) method. The experiment results show that the alignment precision of the proposed method is improved by more than 10% compared with the traditional OBA method. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1083-4435 1941-014X |
| DOI: | 10.1109/TMECH.2021.3123951 |