Probabilistic Stacked Denoising Autoencoder for Power System Transient Stability Prediction With Wind Farms

To address the uncertainties of renewable energy and loads in transient stability assessment with credible contingencies, this letter proposes a stacked denoising autoencoder (SDAE)-based probabilistic prediction method. The correlations among wind farms have been effectively considered through the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems Vol. 36; no. 4; pp. 3786 - 3789
Main Authors: Su, Tong, Liu, Youbo, Zhao, Junbo, Liu, Junyong
Format: Journal Article
Language:English
Published: New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0885-8950, 1558-0679
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To address the uncertainties of renewable energy and loads in transient stability assessment with credible contingencies, this letter proposes a stacked denoising autoencoder (SDAE)-based probabilistic prediction method. The correlations among wind farms have been effectively considered through the variable transformation via the Cholesky decomposition. SDAE allows learning the mapping relationship between operational features and the transient stability margin. The possible operation scenarios are sampled under different confidence levels to generate appropriate inputs for SDAE to assess the probabilistic transient stability distribution. Results on the modified IEEE 39-bus system show that our proposed method can achieve a similar level of accuracy as the benchmark and improved Monte Carlo simulations-based methods while having much higher computational efficiency.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2020.3043620