Probabilistic Stacked Denoising Autoencoder for Power System Transient Stability Prediction With Wind Farms

To address the uncertainties of renewable energy and loads in transient stability assessment with credible contingencies, this letter proposes a stacked denoising autoencoder (SDAE)-based probabilistic prediction method. The correlations among wind farms have been effectively considered through the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on power systems Ročník 36; číslo 4; s. 3786 - 3789
Hlavní autoři: Su, Tong, Liu, Youbo, Zhao, Junbo, Liu, Junyong
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0885-8950, 1558-0679
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To address the uncertainties of renewable energy and loads in transient stability assessment with credible contingencies, this letter proposes a stacked denoising autoencoder (SDAE)-based probabilistic prediction method. The correlations among wind farms have been effectively considered through the variable transformation via the Cholesky decomposition. SDAE allows learning the mapping relationship between operational features and the transient stability margin. The possible operation scenarios are sampled under different confidence levels to generate appropriate inputs for SDAE to assess the probabilistic transient stability distribution. Results on the modified IEEE 39-bus system show that our proposed method can achieve a similar level of accuracy as the benchmark and improved Monte Carlo simulations-based methods while having much higher computational efficiency.
AbstractList To address the uncertainties of renewable energy and loads in transient stability assessment with credible contingencies, this letter proposes a stacked denoising autoencoder (SDAE)-based probabilistic prediction method. The correlations among wind farms have been effectively considered through the variable transformation via the Cholesky decomposition. SDAE allows learning the mapping relationship between operational features and the transient stability margin. The possible operation scenarios are sampled under different confidence levels to generate appropriate inputs for SDAE to assess the probabilistic transient stability distribution. Results on the modified IEEE 39-bus system show that our proposed method can achieve a similar level of accuracy as the benchmark and improved Monte Carlo simulations-based methods while having much higher computational efficiency.
Author Su, Tong
Liu, Youbo
Liu, Junyong
Zhao, Junbo
Author_xml – sequence: 1
  givenname: Tong
  orcidid: 0000-0002-5424-6757
  surname: Su
  fullname: Su, Tong
  email: sutongscu@gmail.com
  organization: School of Electrical Engineering and Information, Sichuan University, Chengdu, China
– sequence: 2
  givenname: Youbo
  orcidid: 0000-0002-5465-5243
  surname: Liu
  fullname: Liu, Youbo
  email: liuyoubo@scu.edu.cn
  organization: School of Electrical Engineering and Information, Sichuan University, Chengdu, China
– sequence: 3
  givenname: Junbo
  orcidid: 0000-0002-8498-9666
  surname: Zhao
  fullname: Zhao, Junbo
  email: junbo@ece.msstate.edu
  organization: Electrical and Computer Engineering, Mississippi State University, Mississippi State, USA
– sequence: 4
  givenname: Junyong
  surname: Liu
  fullname: Liu, Junyong
  email: liujy@scu.edu.cn
  organization: School of Electrical Engineering and Information, Sichuan University, Chengdu, China
BookMark eNp9kE1LAzEQhoNUsFb_gF4CnrdOspvd5Ch-g2CxlR6XbJLV9CPRJEX67921xYMHLzMDM8_7Mu8xGjjvDEJnBMaEgLicTeYv0zEFCuMcirykcICGhDGeQVmJARoC5yzjgsEROo5xAQBltxii5ST4RjZ2ZWOyCk-TVEuj8Y1x3kbr3vDVJnnjlNcm4NYHPPFf3TTdxmTWeBaki9a41IO9SNriSTDaqmS9w3Ob3rviNL6TYR1P0GErV9Gc7vsIvd7dzq4fsqfn-8frq6dMUcFSVgrR5i0TwHLCq0LkrS6Z1FI2peQF1wx0I7sPadMoplXRSEk0q1RjgGhK8nyELna6H8F_bkxM9cJvgussa8oKyoBwzrsrurtSwccYTFt_BLuWYVsTqPtQ659Q6z7Ueh9qB_E_kLJJ9s-mIO3qf_R8h1pjzK-XoJxXFcm_AUlZiQQ
CODEN ITPSEG
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3542535
crossref_primary_10_1088_1361_6501_ad9628
crossref_primary_10_1002_cjce_25041
crossref_primary_10_1109_TII_2023_3341261
crossref_primary_10_1109_TPWRS_2025_3540421
crossref_primary_10_3390_en16237810
crossref_primary_10_1631_FITEE_2300873
crossref_primary_10_3390_sym16101355
crossref_primary_10_1016_j_apenergy_2023_122106
crossref_primary_10_1109_TPWRS_2023_3257368
crossref_primary_10_1109_TPWRS_2023_3270800
crossref_primary_10_1109_TSTE_2024_3444689
crossref_primary_10_1002_we_2761
crossref_primary_10_1109_ACCESS_2025_3546491
crossref_primary_10_1109_ACCESS_2021_3111408
crossref_primary_10_1109_TPWRS_2023_3276207
crossref_primary_10_1109_TPWRS_2024_3524406
crossref_primary_10_3390_en15020507
crossref_primary_10_3390_pr12112409
crossref_primary_10_1109_TPWRS_2024_3406674
crossref_primary_10_3389_fenrg_2022_1023822
crossref_primary_10_23919_PCMP_2023_000221
crossref_primary_10_1016_j_asoc_2023_110243
crossref_primary_10_1109_TIA_2024_3462679
crossref_primary_10_1109_TPWRS_2022_3156430
crossref_primary_10_1016_j_epsr_2022_108948
crossref_primary_10_1109_TPWRS_2023_3248293
crossref_primary_10_1016_j_ijepes_2022_108283
crossref_primary_10_1109_TPWRS_2023_3323025
Cites_doi 10.1109/TPWRS.2016.2564444
10.1109/TPWRS.2019.2895592
10.1109/TPWRS.2019.2897727
10.1109/TPWRS.2013.2283064
10.1109/TPWRS.2013.2281118
10.1109/59.867177
10.1109/TPWRS.2017.2720687
10.1109/TEC.2016.2618895
10.1016/j.ijepes.2019.105649
10.1016/j.ijepes.2018.11.031
10.1109/TPWRS.2012.2183898
10.1109/59.336108
10.1109/TPWRS.2016.2630799
10.1109/TNNLS.2015.2396937
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TPWRS.2020.3043620
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0679
EndPage 3789
ExternalDocumentID 10_1109_TPWRS_2020_3043620
9288771
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51977133
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c295t-699f3f59053187493fd65adaab6a848d50dba6202bbc5dc4baa1d57cbe01d2133
IEDL.DBID RIE
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000664032400086&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-8950
IngestDate Fri Jul 25 19:14:06 EDT 2025
Tue Nov 18 20:52:05 EST 2025
Sat Nov 29 02:52:23 EST 2025
Wed Aug 27 02:26:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-699f3f59053187493fd65adaab6a848d50dba6202bbc5dc4baa1d57cbe01d2133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5424-6757
0000-0002-5465-5243
0000-0002-8498-9666
PQID 2542501888
PQPubID 85441
PageCount 4
ParticipantIDs proquest_journals_2542501888
ieee_primary_9288771
crossref_primary_10_1109_TPWRS_2020_3043620
crossref_citationtrail_10_1109_TPWRS_2020_3043620
PublicationCentury 2000
PublicationDate 2021-July
2021-7-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-July
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power systems
PublicationTitleAbbrev TPWRS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
vincent (ref12) 2010; 11
ref11
ref10
ref2
ref1
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref2
  doi: 10.1109/TPWRS.2016.2564444
– ident: ref6
  doi: 10.1109/TPWRS.2019.2895592
– ident: ref1
  doi: 10.1109/TPWRS.2019.2897727
– ident: ref14
  doi: 10.1109/TPWRS.2013.2283064
– ident: ref15
  doi: 10.1109/TPWRS.2013.2281118
– ident: ref9
  doi: 10.1109/59.867177
– ident: ref4
  doi: 10.1109/TPWRS.2017.2720687
– ident: ref13
  doi: 10.1109/TEC.2016.2618895
– ident: ref3
  doi: 10.1016/j.ijepes.2019.105649
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref12
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: ref7
  doi: 10.1016/j.ijepes.2018.11.031
– ident: ref8
  doi: 10.1109/TPWRS.2012.2183898
– ident: ref10
  doi: 10.1109/59.336108
– ident: ref5
  doi: 10.1109/TPWRS.2016.2630799
– ident: ref11
  doi: 10.1109/TNNLS.2015.2396937
SSID ssj0006679
Score 2.5174272
Snippet To address the uncertainties of renewable energy and loads in transient stability assessment with credible contingencies, this letter proposes a stacked...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3786
SubjectTerms Confidence intervals
Monte Carlo simulation
Noise reduction
Power system stability
Probabilistic logic
probabilistic prediction
Stability analysis
Stability criteria
stacked denoising autoencoder (SDAE)
Statistical analysis
Transient analysis
Transient stability
Wind farms
Wind power
Wind power generation
wind uncertainty
Title Probabilistic Stacked Denoising Autoencoder for Power System Transient Stability Prediction With Wind Farms
URI https://ieeexplore.ieee.org/document/9288771
https://www.proquest.com/docview/2542501888
Volume 36
WOSCitedRecordID wos000664032400086&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0679
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006679
  issn: 0885-8950
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86POjBrynOL3LwpnVtlrTJUdThQaToZLuVfBWH2knXCf735qXdGCiCl9JDHpT8-r6S934PobNcUmoF04GMSBJQylQg40QHTMfWqFAQWbPr3ycPD3w0EukKulj0wlhrffGZvYRXf5dvJnoGR2VdQZxKQMP4apIkda_WwurGcc2rxzkLuGDhvEEmFN1BOnx8cqkgcRkqMK7DbO8lJ-Snqvwwxd6_9Lf-92XbaLOJI_FVDfwOWrHFLtpYYhdso9e0dMoKxa_AxYxdWOk01uAbW0zGcEKAr2bVBHgsjS2xi11xChPTcM1hjr0Tg2ZJEPQVtF84LeFaB6DEw3H14h6FwX1Zvk_30HP_dnB9FzSzFQJNBKuCWIi8lzMBOsgTKnq5iZk0UqpYcsoNC42SbqeIUpoZTZWUkWGJVjaMDHGJ7T5qFZPCHiAcqViQXPeoJjkVuZIuyGQyNNbmxjj71UHRfLMz3RCPw_yLt8wnIKHIPEAZAJQ1AHXQ-ULmo6bd-HN1GyBZrGzQ6KDjOaZZo5nTzCXEBEgMOT_8XeoIrROoW_EluceoVZUze4LW9Gc1npan_qf7BriT1qo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH-axqSNAww2RKFsPnCDsMS1E_tYAVWndVW0FbW3yF_RKiBFaYrEf4-fk1aThpB2iXLwkyL_8r7s934P4H2pGHOSm0glNIsY4zpSaWYiblJndSypatn1J9l0KhYLme_Bx10vjHMuFJ-5T_ga7vLtymzwqOxCUq8S2DD-hDNGk7Zba2d307Rl1hOCR0LyeNsiE8uLWT6_ufXJIPU5KnKu43Tve24ozFV5YIyDhxk9f9y3HcOzLpIkwxb6F7Dnqpfw9B6_4Al8z2uvrlj-imzMxAeWXmct-eKq1RLPCMhw06yQydK6mvjoleQ4M420LOYkuDFsl0TBUEP7h-Q1XuwgmGS-bO78o7JkpOqf61P4Nvo6-zyOuukKkaGSN1EqZTkouUQtFBmTg9KmXFmldKoEE5bHViu_U1Rrw61hWqnE8sxoFyeW-tT2FexXq8q9BpLoVNLSDJihJZOlVj7M5Cq2zpXWegvWg2S72YXpqMdxAsaPIqQgsSwCQAUCVHQA9eDDTuZXS7zx39UnCMluZYdGD_pbTItON9eFT4kp0hgK8ebfUudwOJ5dT4rJ5fTqLRxRrGIJBbp92G_qjXsHB-Z3s1zXZ-EH_AsIeNnx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+Stacked+Denoising+Autoencoder+for+Power+System+Transient+Stability+Prediction+With+Wind+Farms&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Su%2C+Tong&rft.au=Liu%2C+Youbo&rft.au=Zhao%2C+Junbo&rft.au=Liu%2C+Junyong&rft.date=2021-07-01&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=36&rft.issue=4&rft.spage=3786&rft.epage=3789&rft_id=info:doi/10.1109%2FTPWRS.2020.3043620&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPWRS_2020_3043620
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon