Probabilistic Stacked Denoising Autoencoder for Power System Transient Stability Prediction With Wind Farms
To address the uncertainties of renewable energy and loads in transient stability assessment with credible contingencies, this letter proposes a stacked denoising autoencoder (SDAE)-based probabilistic prediction method. The correlations among wind farms have been effectively considered through the...
Uloženo v:
| Vydáno v: | IEEE transactions on power systems Ročník 36; číslo 4; s. 3786 - 3789 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0885-8950, 1558-0679 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | To address the uncertainties of renewable energy and loads in transient stability assessment with credible contingencies, this letter proposes a stacked denoising autoencoder (SDAE)-based probabilistic prediction method. The correlations among wind farms have been effectively considered through the variable transformation via the Cholesky decomposition. SDAE allows learning the mapping relationship between operational features and the transient stability margin. The possible operation scenarios are sampled under different confidence levels to generate appropriate inputs for SDAE to assess the probabilistic transient stability distribution. Results on the modified IEEE 39-bus system show that our proposed method can achieve a similar level of accuracy as the benchmark and improved Monte Carlo simulations-based methods while having much higher computational efficiency. |
|---|---|
| AbstractList | To address the uncertainties of renewable energy and loads in transient stability assessment with credible contingencies, this letter proposes a stacked denoising autoencoder (SDAE)-based probabilistic prediction method. The correlations among wind farms have been effectively considered through the variable transformation via the Cholesky decomposition. SDAE allows learning the mapping relationship between operational features and the transient stability margin. The possible operation scenarios are sampled under different confidence levels to generate appropriate inputs for SDAE to assess the probabilistic transient stability distribution. Results on the modified IEEE 39-bus system show that our proposed method can achieve a similar level of accuracy as the benchmark and improved Monte Carlo simulations-based methods while having much higher computational efficiency. |
| Author | Su, Tong Liu, Youbo Liu, Junyong Zhao, Junbo |
| Author_xml | – sequence: 1 givenname: Tong orcidid: 0000-0002-5424-6757 surname: Su fullname: Su, Tong email: sutongscu@gmail.com organization: School of Electrical Engineering and Information, Sichuan University, Chengdu, China – sequence: 2 givenname: Youbo orcidid: 0000-0002-5465-5243 surname: Liu fullname: Liu, Youbo email: liuyoubo@scu.edu.cn organization: School of Electrical Engineering and Information, Sichuan University, Chengdu, China – sequence: 3 givenname: Junbo orcidid: 0000-0002-8498-9666 surname: Zhao fullname: Zhao, Junbo email: junbo@ece.msstate.edu organization: Electrical and Computer Engineering, Mississippi State University, Mississippi State, USA – sequence: 4 givenname: Junyong surname: Liu fullname: Liu, Junyong email: liujy@scu.edu.cn organization: School of Electrical Engineering and Information, Sichuan University, Chengdu, China |
| BookMark | eNp9kE1LAzEQhoNUsFb_gF4CnrdOspvd5Ch-g2CxlR6XbJLV9CPRJEX67921xYMHLzMDM8_7Mu8xGjjvDEJnBMaEgLicTeYv0zEFCuMcirykcICGhDGeQVmJARoC5yzjgsEROo5xAQBltxii5ST4RjZ2ZWOyCk-TVEuj8Y1x3kbr3vDVJnnjlNcm4NYHPPFf3TTdxmTWeBaki9a41IO9SNriSTDaqmS9w3Ob3rviNL6TYR1P0GErV9Gc7vsIvd7dzq4fsqfn-8frq6dMUcFSVgrR5i0TwHLCq0LkrS6Z1FI2peQF1wx0I7sPadMoplXRSEk0q1RjgGhK8nyELna6H8F_bkxM9cJvgussa8oKyoBwzrsrurtSwccYTFt_BLuWYVsTqPtQ659Q6z7Ueh9qB_E_kLJJ9s-mIO3qf_R8h1pjzK-XoJxXFcm_AUlZiQQ |
| CODEN | ITPSEG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3542535 crossref_primary_10_1088_1361_6501_ad9628 crossref_primary_10_1002_cjce_25041 crossref_primary_10_1109_TII_2023_3341261 crossref_primary_10_1109_TPWRS_2025_3540421 crossref_primary_10_3390_en16237810 crossref_primary_10_1631_FITEE_2300873 crossref_primary_10_3390_sym16101355 crossref_primary_10_1016_j_apenergy_2023_122106 crossref_primary_10_1109_TPWRS_2023_3257368 crossref_primary_10_1109_TPWRS_2023_3270800 crossref_primary_10_1109_TSTE_2024_3444689 crossref_primary_10_1002_we_2761 crossref_primary_10_1109_ACCESS_2025_3546491 crossref_primary_10_1109_ACCESS_2021_3111408 crossref_primary_10_1109_TPWRS_2023_3276207 crossref_primary_10_1109_TPWRS_2024_3524406 crossref_primary_10_3390_en15020507 crossref_primary_10_3390_pr12112409 crossref_primary_10_1109_TPWRS_2024_3406674 crossref_primary_10_3389_fenrg_2022_1023822 crossref_primary_10_23919_PCMP_2023_000221 crossref_primary_10_1016_j_asoc_2023_110243 crossref_primary_10_1109_TIA_2024_3462679 crossref_primary_10_1109_TPWRS_2022_3156430 crossref_primary_10_1016_j_epsr_2022_108948 crossref_primary_10_1109_TPWRS_2023_3248293 crossref_primary_10_1016_j_ijepes_2022_108283 crossref_primary_10_1109_TPWRS_2023_3323025 |
| Cites_doi | 10.1109/TPWRS.2016.2564444 10.1109/TPWRS.2019.2895592 10.1109/TPWRS.2019.2897727 10.1109/TPWRS.2013.2283064 10.1109/TPWRS.2013.2281118 10.1109/59.867177 10.1109/TPWRS.2017.2720687 10.1109/TEC.2016.2618895 10.1016/j.ijepes.2019.105649 10.1016/j.ijepes.2018.11.031 10.1109/TPWRS.2012.2183898 10.1109/59.336108 10.1109/TPWRS.2016.2630799 10.1109/TNNLS.2015.2396937 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| DOI | 10.1109/TPWRS.2020.3043620 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0679 |
| EndPage | 3789 |
| ExternalDocumentID | 10_1109_TPWRS_2020_3043620 9288771 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51977133 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c295t-699f3f59053187493fd65adaab6a848d50dba6202bbc5dc4baa1d57cbe01d2133 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000664032400086&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-8950 |
| IngestDate | Fri Jul 25 19:14:06 EDT 2025 Tue Nov 18 20:52:05 EST 2025 Sat Nov 29 02:52:23 EST 2025 Wed Aug 27 02:26:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-699f3f59053187493fd65adaab6a848d50dba6202bbc5dc4baa1d57cbe01d2133 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5424-6757 0000-0002-5465-5243 0000-0002-8498-9666 |
| PQID | 2542501888 |
| PQPubID | 85441 |
| PageCount | 4 |
| ParticipantIDs | proquest_journals_2542501888 ieee_primary_9288771 crossref_primary_10_1109_TPWRS_2020_3043620 crossref_citationtrail_10_1109_TPWRS_2020_3043620 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-July 2021-7-00 20210701 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-July |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on power systems |
| PublicationTitleAbbrev | TPWRS |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref15 ref14 vincent (ref12) 2010; 11 ref11 ref10 ref2 ref1 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref2 doi: 10.1109/TPWRS.2016.2564444 – ident: ref6 doi: 10.1109/TPWRS.2019.2895592 – ident: ref1 doi: 10.1109/TPWRS.2019.2897727 – ident: ref14 doi: 10.1109/TPWRS.2013.2283064 – ident: ref15 doi: 10.1109/TPWRS.2013.2281118 – ident: ref9 doi: 10.1109/59.867177 – ident: ref4 doi: 10.1109/TPWRS.2017.2720687 – ident: ref13 doi: 10.1109/TEC.2016.2618895 – ident: ref3 doi: 10.1016/j.ijepes.2019.105649 – volume: 11 start-page: 3371 year: 2010 ident: ref12 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – ident: ref7 doi: 10.1016/j.ijepes.2018.11.031 – ident: ref8 doi: 10.1109/TPWRS.2012.2183898 – ident: ref10 doi: 10.1109/59.336108 – ident: ref5 doi: 10.1109/TPWRS.2016.2630799 – ident: ref11 doi: 10.1109/TNNLS.2015.2396937 |
| SSID | ssj0006679 |
| Score | 2.5174272 |
| Snippet | To address the uncertainties of renewable energy and loads in transient stability assessment with credible contingencies, this letter proposes a stacked... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3786 |
| SubjectTerms | Confidence intervals Monte Carlo simulation Noise reduction Power system stability Probabilistic logic probabilistic prediction Stability analysis Stability criteria stacked denoising autoencoder (SDAE) Statistical analysis Transient analysis Transient stability Wind farms Wind power Wind power generation wind uncertainty |
| Title | Probabilistic Stacked Denoising Autoencoder for Power System Transient Stability Prediction With Wind Farms |
| URI | https://ieeexplore.ieee.org/document/9288771 https://www.proquest.com/docview/2542501888 |
| Volume | 36 |
| WOSCitedRecordID | wos000664032400086&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0679 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006679 issn: 0885-8950 databaseCode: RIE dateStart: 19860101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86POjBrynOL3LwpnVtlrTJUdThQaToZLuVfBWH2knXCf735qXdGCiCl9JDHpT8-r6S934PobNcUmoF04GMSBJQylQg40QHTMfWqFAQWbPr3ycPD3w0EukKulj0wlhrffGZvYRXf5dvJnoGR2VdQZxKQMP4apIkda_WwurGcc2rxzkLuGDhvEEmFN1BOnx8cqkgcRkqMK7DbO8lJ-Snqvwwxd6_9Lf-92XbaLOJI_FVDfwOWrHFLtpYYhdso9e0dMoKxa_AxYxdWOk01uAbW0zGcEKAr2bVBHgsjS2xi11xChPTcM1hjr0Tg2ZJEPQVtF84LeFaB6DEw3H14h6FwX1Zvk_30HP_dnB9FzSzFQJNBKuCWIi8lzMBOsgTKnq5iZk0UqpYcsoNC42SbqeIUpoZTZWUkWGJVjaMDHGJ7T5qFZPCHiAcqViQXPeoJjkVuZIuyGQyNNbmxjj71UHRfLMz3RCPw_yLt8wnIKHIPEAZAJQ1AHXQ-ULmo6bd-HN1GyBZrGzQ6KDjOaZZo5nTzCXEBEgMOT_8XeoIrROoW_EluceoVZUze4LW9Gc1npan_qf7BriT1qo |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH-axqSNAww2RKFsPnCDsMS1E_tYAVWndVW0FbW3yF_RKiBFaYrEf4-fk1aThpB2iXLwkyL_8r7s934P4H2pGHOSm0glNIsY4zpSaWYiblJndSypatn1J9l0KhYLme_Bx10vjHMuFJ-5T_ga7vLtymzwqOxCUq8S2DD-hDNGk7Zba2d307Rl1hOCR0LyeNsiE8uLWT6_ufXJIPU5KnKu43Tve24ozFV5YIyDhxk9f9y3HcOzLpIkwxb6F7Dnqpfw9B6_4Al8z2uvrlj-imzMxAeWXmct-eKq1RLPCMhw06yQydK6mvjoleQ4M420LOYkuDFsl0TBUEP7h-Q1XuwgmGS-bO78o7JkpOqf61P4Nvo6-zyOuukKkaGSN1EqZTkouUQtFBmTg9KmXFmldKoEE5bHViu_U1Rrw61hWqnE8sxoFyeW-tT2FexXq8q9BpLoVNLSDJihJZOlVj7M5Cq2zpXWegvWg2S72YXpqMdxAsaPIqQgsSwCQAUCVHQA9eDDTuZXS7zx39UnCMluZYdGD_pbTItON9eFT4kp0hgK8ebfUudwOJ5dT4rJ5fTqLRxRrGIJBbp92G_qjXsHB-Z3s1zXZ-EH_AsIeNnx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+Stacked+Denoising+Autoencoder+for+Power+System+Transient+Stability+Prediction+With+Wind+Farms&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Su%2C+Tong&rft.au=Liu%2C+Youbo&rft.au=Zhao%2C+Junbo&rft.au=Liu%2C+Junyong&rft.date=2021-07-01&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=36&rft.issue=4&rft.spage=3786&rft.epage=3789&rft_id=info:doi/10.1109%2FTPWRS.2020.3043620&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPWRS_2020_3043620 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon |