Prediction of Casing Collapse Strength Based on Bayesian Neural Network

With the application of complex fracturing and other complex technologies, external extrusion has become the main cause of casing damage, which makes non-API high-extrusion-resistant casing continuously used in unconventional oil and gas resources exploitation. Due to the strong sensitivity of strin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes Jg. 10; H. 7; S. 1327
Hauptverfasser: Li, Dongfeng, Fan, Heng, Wang, Rui, Yang, Shangyu, Zhao, Yating, Yan, Xiangzhen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.07.2022
Schlagworte:
ISSN:2227-9717, 2227-9717
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With the application of complex fracturing and other complex technologies, external extrusion has become the main cause of casing damage, which makes non-API high-extrusion-resistant casing continuously used in unconventional oil and gas resources exploitation. Due to the strong sensitivity of string ovality, uneven wall thickness, residual stress, and other factors to high anti-collapse casing, the API formula has a big error in predicting the anti-collapse strength of high anti-collapse casing. Therefore, Bayesian regularization artificial neural network (BRANN) is used to predict the external collapse strength of high anti-collapse casing. By collecting full-scale physical data, including initial defect data, geometric size, mechanical parameters, etc., after data preprocessing, the casing collapse strength data set is established for model training and blind measurement. Under the classical three-layer neural network, the Bayesian regularization algorithm is used for training. Through empirical formula and trial and error method, it is determined that when the number of hidden neurons is 12, the model is the best prediction model for high collapse resistance casing. The prediction results of the blind test data imported by the model show that the coincidence rate of BRANN casing collapse strength prediction can reach 96.67%. Through error analysis with API formula prediction results and KT formula prediction results improved by least square fitting, the BRANN-based casing collapse strength prediction has higher accuracy and stability. Compared with the traditional prediction method, this model can be used to predict casing strength under more complicated working conditions, and it has a certain guiding significance.
AbstractList With the application of complex fracturing and other complex technologies, external extrusion has become the main cause of casing damage, which makes non-API high-extrusion-resistant casing continuously used in unconventional oil and gas resources exploitation. Due to the strong sensitivity of string ovality, uneven wall thickness, residual stress, and other factors to high anti-collapse casing, the API formula has a big error in predicting the anti-collapse strength of high anti-collapse casing. Therefore, Bayesian regularization artificial neural network (BRANN) is used to predict the external collapse strength of high anti-collapse casing. By collecting full-scale physical data, including initial defect data, geometric size, mechanical parameters, etc., after data preprocessing, the casing collapse strength data set is established for model training and blind measurement. Under the classical three-layer neural network, the Bayesian regularization algorithm is used for training. Through empirical formula and trial and error method, it is determined that when the number of hidden neurons is 12, the model is the best prediction model for high collapse resistance casing. The prediction results of the blind test data imported by the model show that the coincidence rate of BRANN casing collapse strength prediction can reach 96.67%. Through error analysis with API formula prediction results and KT formula prediction results improved by least square fitting, the BRANN-based casing collapse strength prediction has higher accuracy and stability. Compared with the traditional prediction method, this model can be used to predict casing strength under more complicated working conditions, and it has a certain guiding significance.
Author Yang, Shangyu
Zhao, Yating
Yan, Xiangzhen
Fan, Heng
Li, Dongfeng
Wang, Rui
Author_xml – sequence: 1
  givenname: Dongfeng
  surname: Li
  fullname: Li, Dongfeng
– sequence: 2
  givenname: Heng
  orcidid: 0000-0003-1685-0790
  surname: Fan
  fullname: Fan, Heng
– sequence: 3
  givenname: Rui
  surname: Wang
  fullname: Wang, Rui
– sequence: 4
  givenname: Shangyu
  surname: Yang
  fullname: Yang, Shangyu
– sequence: 5
  givenname: Yating
  surname: Zhao
  fullname: Zhao, Yating
– sequence: 6
  givenname: Xiangzhen
  surname: Yan
  fullname: Yan, Xiangzhen
BookMark eNptkFFLwzAUhYNMcM69-AsKvgnV5KZJ20dXdApDBfdesvRmZtamJhmyf2_HBEW8L-c-fOdezjklo851SMg5o1ecl_S694zSnHHIj8gYAPK0zFk--rWfkGkIGzpMyXgh5JjMnz02VkfrusSZpFLBduukcm2r-oDJS_TYreNrMlMBm2SAZmqHwaouecStV-0g8dP5tzNybFQbcPqtE7K8u11W9-niaf5Q3SxSDaWIqQQFaCAH1XBTCEAuoGg0aKpFgytTYMEpsIwZCZKKlTRMyhUvi6JBmms-IReHs713H1sMsd64re-GjzXIMqMgsqwcKHqgtHcheDS1tlHtM0avbFszWu8Lq38KGyyXfyy9t-_K7_6DvwB6-2vw
CitedBy_id crossref_primary_10_3389_feart_2024_1454449
Cites_doi 10.1007/s11771-014-2324-6
10.1016/j.jlp.2018.10.009
10.1016/j.petrol.2020.107811
10.1016/j.oceaneng.2018.04.098
10.1016/S1876-3804(20)60055-6
10.1109/SAMI.2017.7880337
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/pr10071327
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database
Biological Sciences
Biological Science Database
Materials Science Collection
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2227-9717
ExternalDocumentID 10_3390_pr10071327
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
HCIFZ
IAO
IGS
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RNS
7SR
8FD
ABUWG
AZQEC
DWQXO
GNUQQ
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c295t-62a2ef272ad3f852e3528dc2c0c5debf8e8302141f62605b6f166b3988de07c3
IEDL.DBID M7P
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000831459000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-9717
IngestDate Fri Jul 25 11:42:15 EDT 2025
Tue Nov 18 21:36:24 EST 2025
Sat Nov 29 07:17:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-62a2ef272ad3f852e3528dc2c0c5debf8e8302141f62605b6f166b3988de07c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1685-0790
OpenAccessLink https://www.proquest.com/docview/2694025449?pq-origsite=%requestingapplication%
PQID 2694025449
PQPubID 2032344
ParticipantIDs proquest_journals_2694025449
crossref_citationtrail_10_3390_pr10071327
crossref_primary_10_3390_pr10071327
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhang (ref_2) 2018; 40
Zhang (ref_8) 2017; 40
ref_12
Liu (ref_21) 2020; 40
Tan (ref_9) 2020; 42
ref_19
Han (ref_1) 2001; 24
Li (ref_13) 2015; 25
Lin (ref_18) 2014; 21
Xia (ref_6) 2021; 44
ref_15
Negash (ref_10) 2020; 47
Zhang (ref_4) 2018; 33
Jiao (ref_23) 2017; 40
Pan (ref_14) 2012; 2
Xiao (ref_22) 2020; 17
ref_24
Shi (ref_17) 2019; 57
ref_20
Lou (ref_3) 2012; 41
Negash (ref_11) 2018; 12
Mohamadian (ref_25) 2020; 196
Shi (ref_16) 2018; 161
ref_5
ref_7
References_xml – ident: ref_7
– ident: ref_5
– volume: 44
  start-page: 5
  year: 2021
  ident: ref_6
  article-title: PEMFC stack modeling based on Bayesian regularization BP neural network
  publication-title: J. Hefei Univ. Technol.
– volume: 40
  start-page: 94
  year: 2020
  ident: ref_21
  article-title: Calculation and experiment of anti-collapse performance of titanium alloy tubing and casing
  publication-title: Nat. Gas Ind.
– volume: 41
  start-page: 38
  year: 2012
  ident: ref_3
  article-title: Experimental study on the main influencing factors of casing collapse strength
  publication-title: Pet. Field Mach.
– volume: 33
  start-page: 1319
  year: 2018
  ident: ref_4
  article-title: Research on the application of Bayesian neural network method in casing loss prediction
  publication-title: Prog. Geophys.
– volume: 21
  start-page: 3470
  year: 2014
  ident: ref_18
  article-title: Theoretical and experimental analyses of casing collapsing strength under non-uniform loading
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-014-2324-6
– volume: 40
  start-page: 736
  year: 2018
  ident: ref_2
  article-title: Quantitative failure risk analysis of shale gas well casing deformation based on Bayesian network
  publication-title: Pet. Drill. Prod. Technol.
– volume: 40
  start-page: 4
  year: 2017
  ident: ref_8
  article-title: Hidden layer node estimation algorithm of BP network based on simulated annealing
  publication-title: J. Hefei Univ. Technol.
– volume: 57
  start-page: 131
  year: 2019
  ident: ref_17
  article-title: Application of Bayesian Regularization Artificial Neural Network in explosion risk analysis of fixed offshore platform
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2018.10.009
– volume: 17
  start-page: 39
  year: 2020
  ident: ref_22
  article-title: Model and optimization of the collapse strength of casing-cement ring combination under non-uniform ground stress
  publication-title: J. Yangtze Univ.
– volume: 25
  start-page: 75
  year: 2015
  ident: ref_13
  article-title: Bayesian dynamic model for risk analysis of submarine oil and gas pipeline leakage accidents
  publication-title: Chin. Saf. Sci. J.
– ident: ref_12
– volume: 2
  start-page: 45
  year: 2012
  ident: ref_14
  article-title: Application of Bayesian Normalization Algorithm in Reservoir Parameter Fitting
  publication-title: Internet Things Technol.
– volume: 24
  start-page: 48
  year: 2001
  ident: ref_1
  article-title: Preliminary study on casing collapse strength under non-uniform load
  publication-title: Drill. Technol.
– volume: 12
  start-page: 67
  year: 2018
  ident: ref_11
  article-title: Application of artificial neural networks for calibration of a reservoir model
  publication-title: Intell. Decis. Technol.
– volume: 196
  start-page: 107811
  year: 2020
  ident: ref_25
  article-title: A geomechanical approach to casing collapse prediction in oil and gas wells aided by machine learning
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.107811
– volume: 161
  start-page: 98
  year: 2018
  ident: ref_16
  article-title: Robust data-driven model to study dispersion of vapor cloud in offshore facility
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2018.04.098
– ident: ref_15
– ident: ref_19
– volume: 47
  start-page: 357
  year: 2020
  ident: ref_10
  article-title: Production prediction of waterflooding reservoir based on artificial neural network
  publication-title: Pet. Explor. Dev.
  doi: 10.1016/S1876-3804(20)60055-6
– volume: 42
  start-page: 7
  year: 2020
  ident: ref_9
  article-title: Optimization of shale gas fracturing construction parameters based on PCA-BNN
  publication-title: J. Southwest Pet. Univ.
– ident: ref_24
  doi: 10.1109/SAMI.2017.7880337
– ident: ref_20
– volume: 40
  start-page: 20
  year: 2017
  ident: ref_23
  article-title: P110 steel grade Φ139.7mm × 10.54mm high collapse resistance performance analysis and collapse strength prediction
  publication-title: Welded Pipe
SSID ssj0000913856
Score 2.1940024
Snippet With the application of complex fracturing and other complex technologies, external extrusion has become the main cause of casing damage, which makes non-API...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1327
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Bayesian analysis
Collapse
Continuous extrusion
Data transfer (computers)
Empirical analysis
Error analysis
Expected values
Gas industry
Machine learning
Mechanical properties
Neural networks
Prediction models
Regularization
Regularization methods
Residual stress
Training
Trial and error methods
Yield stress
Title Prediction of Casing Collapse Strength Based on Bayesian Neural Network
URI https://www.proquest.com/docview/2694025449
Volume 10
WOSCitedRecordID wos000831459000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M7P
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: KB.
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5s60EPaqvio5YFPdhDtN2YzeYktrQqaglSpJ5CstlVQdraVMGLv92d7fYhiBcvuexCQmbn8c3OfANwFCuq44qUOyz1NUDROuUEPJAapSie0KCmfNP1_nDrdzq81wtCm3DLbFnl1CYaQ50OBObIT7Hj0vBpBefDNwenRuHtqh2hkYMCsiS4pnQvnOVYkPOSe2zCSupqdH86HNUNLsMhMot-6KcZNr6lvf7fr9qANRtVkovJMSjCkuyXYHWBa7AERavFGTm2VNPVTbgMR3hRg8IhA0WaMWYOCCYT4mEmCV5Z95_Gz6ShfV1K9KZG_Cmx7ZIgqYd-Y2dSRb4F3Xar27xy7GgFR9DAGzuMxlQq6tM4dRX3qESSl1RQURNeKhPFJfKC1c_qygCehKk6Y4kbcJ7Kmi_cbcj3B325A8Q_S5THVUITplG2xwMlhQ46k5qImQ4G2S5Up_85EpZ2HKdfvEYafqBMorlMduFwtnc4Idv4dVd5KovIKlwWzQWx9_fyPqxQ7GAwFbdlyI9H7_IAlsXH-CUbVaDQaHXC-wrkbhonFXOa8PnV0ivh9V34-A21s9Ma
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5qK6gH3-Kj6oIKeghNN81m9yBi1Wqxlh6K6Ckkm10VpK1NVfxR_kd38qgK4s2D5wwJyXyZ1858A7AbaGriiohbLPJMgmL-KUtwoUyWonlIha29ZOr9uuW12_zmRnQK8J7PwmBbZW4TE0Md9SXWyCs4cZnwaYmjwZOFW6PwdDVfoZHC4lK9vZqULT5snhr97lHaOOueXFjZVgFLUuGOLEYDqjT1aBA5mrtUIb9JJKm0pRupUHOFlFjVWlUnsX7IdJWx0BGcR8r2pGNuOwGlmsE6L0Kp07zq3I6LOkiyyV2W0qA6jrArg2E1SQRxa81Xx_fd7ifOrDH3zz7DPMxmUTM5TmG-AAXVW4SZL1yKi7CQWamY7GdU2gdLcN4Z4kEUgo_0NTkJsDJCsFgSDGJF8Ei-dze6J3XjyyNihOrBm8KxUoKkJeaJ7bRLfhm6f_F2K1Ds9XtqFYhXC7XLdUhD5qHOhVbSBNWhLQNmgl22Bge5Wn2Z0arjdo9H36RXCAH_EwJrsDOWHaRkIj9KlXPV-5lBif1Pva__fnkbpi66Vy2_1WxfbsA0xWmNpLu4DMXR8FltwqR8GT3Ew60MvAT8P8bJB5r-KsU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB7qA9GDb7FadUEFewhNN81m9yBirVWxlB5EvIVks6uCtLWpij_Nf-fOJvEB4s2D5wwJyX6Z93wDsBdpavyKhDssCUyAYv4pR3ChTJSieUyFqwM79X7dCbpdfnMjeiV4K2ZhsK2y0IlWUScDiTnyGk5cWj4tUdN5W0Sv1T4aPjq4QQorrcU6jQwil-r1xYRv6eFFy5z1PqXt06uTcyffMOBIKvyxw2hElaYBjRJPc58q5DpJJJWu9BMVa66QHqveqGvr98dM1xmLPcF5otxAeua2EzAVIGe57RrsfaR3kG6T-ywjRPU84daGo7oNCXF_zVcT-N0CWLPWXvjHH2QR5nNfmhxn4F-Ckuovw9wXhsVlWMp1V0oOcoLt6gqc9UZYnkJIkoEmJxHmSwimUKJhqggW6vu34zvSNBY-IUaoGb0qHDYlSGVintjNeudX4eov3m4NJvuDvloHEjRi7XMd05gFRutxoZU0rnbsyogZF5iVoVoccShzsnXc-fEQmqAL4RB-wqEMux-yw4xi5EepSgGDMFczafiJgY3fL-_AjAFH2LnoXm7CLMURDttyXIHJ8ehJbcG0fB7fp6Nti2IC4R-D5B050jIE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Casing+Collapse+Strength+Based+on+Bayesian+Neural+Network&rft.jtitle=Processes&rft.au=Li%2C+Dongfeng&rft.au=Fan%2C+Heng&rft.au=Wang%2C+Rui&rft.au=Yang%2C+Shangyu&rft.date=2022-07-01&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=10&rft.issue=7&rft.spage=1327&rft_id=info:doi/10.3390%2Fpr10071327&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon