Prediction of Casing Collapse Strength Based on Bayesian Neural Network
With the application of complex fracturing and other complex technologies, external extrusion has become the main cause of casing damage, which makes non-API high-extrusion-resistant casing continuously used in unconventional oil and gas resources exploitation. Due to the strong sensitivity of strin...
Uloženo v:
| Vydáno v: | Processes Ročník 10; číslo 7; s. 1327 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.07.2022
|
| Témata: | |
| ISSN: | 2227-9717, 2227-9717 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With the application of complex fracturing and other complex technologies, external extrusion has become the main cause of casing damage, which makes non-API high-extrusion-resistant casing continuously used in unconventional oil and gas resources exploitation. Due to the strong sensitivity of string ovality, uneven wall thickness, residual stress, and other factors to high anti-collapse casing, the API formula has a big error in predicting the anti-collapse strength of high anti-collapse casing. Therefore, Bayesian regularization artificial neural network (BRANN) is used to predict the external collapse strength of high anti-collapse casing. By collecting full-scale physical data, including initial defect data, geometric size, mechanical parameters, etc., after data preprocessing, the casing collapse strength data set is established for model training and blind measurement. Under the classical three-layer neural network, the Bayesian regularization algorithm is used for training. Through empirical formula and trial and error method, it is determined that when the number of hidden neurons is 12, the model is the best prediction model for high collapse resistance casing. The prediction results of the blind test data imported by the model show that the coincidence rate of BRANN casing collapse strength prediction can reach 96.67%. Through error analysis with API formula prediction results and KT formula prediction results improved by least square fitting, the BRANN-based casing collapse strength prediction has higher accuracy and stability. Compared with the traditional prediction method, this model can be used to predict casing strength under more complicated working conditions, and it has a certain guiding significance. |
|---|---|
| AbstractList | With the application of complex fracturing and other complex technologies, external extrusion has become the main cause of casing damage, which makes non-API high-extrusion-resistant casing continuously used in unconventional oil and gas resources exploitation. Due to the strong sensitivity of string ovality, uneven wall thickness, residual stress, and other factors to high anti-collapse casing, the API formula has a big error in predicting the anti-collapse strength of high anti-collapse casing. Therefore, Bayesian regularization artificial neural network (BRANN) is used to predict the external collapse strength of high anti-collapse casing. By collecting full-scale physical data, including initial defect data, geometric size, mechanical parameters, etc., after data preprocessing, the casing collapse strength data set is established for model training and blind measurement. Under the classical three-layer neural network, the Bayesian regularization algorithm is used for training. Through empirical formula and trial and error method, it is determined that when the number of hidden neurons is 12, the model is the best prediction model for high collapse resistance casing. The prediction results of the blind test data imported by the model show that the coincidence rate of BRANN casing collapse strength prediction can reach 96.67%. Through error analysis with API formula prediction results and KT formula prediction results improved by least square fitting, the BRANN-based casing collapse strength prediction has higher accuracy and stability. Compared with the traditional prediction method, this model can be used to predict casing strength under more complicated working conditions, and it has a certain guiding significance. |
| Author | Yang, Shangyu Zhao, Yating Yan, Xiangzhen Fan, Heng Li, Dongfeng Wang, Rui |
| Author_xml | – sequence: 1 givenname: Dongfeng surname: Li fullname: Li, Dongfeng – sequence: 2 givenname: Heng orcidid: 0000-0003-1685-0790 surname: Fan fullname: Fan, Heng – sequence: 3 givenname: Rui surname: Wang fullname: Wang, Rui – sequence: 4 givenname: Shangyu surname: Yang fullname: Yang, Shangyu – sequence: 5 givenname: Yating surname: Zhao fullname: Zhao, Yating – sequence: 6 givenname: Xiangzhen surname: Yan fullname: Yan, Xiangzhen |
| BookMark | eNptkFFLwzAUhYNMcM69-AsKvgnV5KZJ20dXdApDBfdesvRmZtamJhmyf2_HBEW8L-c-fOdezjklo851SMg5o1ecl_S694zSnHHIj8gYAPK0zFk--rWfkGkIGzpMyXgh5JjMnz02VkfrusSZpFLBduukcm2r-oDJS_TYreNrMlMBm2SAZmqHwaouecStV-0g8dP5tzNybFQbcPqtE7K8u11W9-niaf5Q3SxSDaWIqQQFaCAH1XBTCEAuoGg0aKpFgytTYMEpsIwZCZKKlTRMyhUvi6JBmms-IReHs713H1sMsd64re-GjzXIMqMgsqwcKHqgtHcheDS1tlHtM0avbFszWu8Lq38KGyyXfyy9t-_K7_6DvwB6-2vw |
| CitedBy_id | crossref_primary_10_3389_feart_2024_1454449 |
| Cites_doi | 10.1007/s11771-014-2324-6 10.1016/j.jlp.2018.10.009 10.1016/j.petrol.2020.107811 10.1016/j.oceaneng.2018.04.098 10.1016/S1876-3804(20)60055-6 10.1109/SAMI.2017.7880337 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SR 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ JG9 KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/pr10071327 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection (subscription) ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Research Database Materials Science Database Biological Sciences Biological Science Database (ProQuest) Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2227-9717 |
| ExternalDocumentID | 10_3390_pr10071327 |
| GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ACIWK ACPRK ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I HCIFZ IAO IGS ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PROAC RNS 7SR 8FD ABUWG AZQEC DWQXO GNUQQ JG9 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c295t-62a2ef272ad3f852e3528dc2c0c5debf8e8302141f62605b6f166b3988de07c3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000831459000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-9717 |
| IngestDate | Fri Jul 25 11:42:15 EDT 2025 Tue Nov 18 21:36:24 EST 2025 Sat Nov 29 07:17:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-62a2ef272ad3f852e3528dc2c0c5debf8e8302141f62605b6f166b3988de07c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1685-0790 |
| OpenAccessLink | https://www.proquest.com/docview/2694025449?pq-origsite=%requestingapplication% |
| PQID | 2694025449 |
| PQPubID | 2032344 |
| ParticipantIDs | proquest_journals_2694025449 crossref_citationtrail_10_3390_pr10071327 crossref_primary_10_3390_pr10071327 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Processes |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zhang (ref_2) 2018; 40 Zhang (ref_8) 2017; 40 ref_12 Liu (ref_21) 2020; 40 Tan (ref_9) 2020; 42 ref_19 Han (ref_1) 2001; 24 Li (ref_13) 2015; 25 Lin (ref_18) 2014; 21 Xia (ref_6) 2021; 44 ref_15 Negash (ref_10) 2020; 47 Zhang (ref_4) 2018; 33 Jiao (ref_23) 2017; 40 Pan (ref_14) 2012; 2 Xiao (ref_22) 2020; 17 ref_24 Shi (ref_17) 2019; 57 ref_20 Lou (ref_3) 2012; 41 Negash (ref_11) 2018; 12 Mohamadian (ref_25) 2020; 196 Shi (ref_16) 2018; 161 ref_5 ref_7 |
| References_xml | – ident: ref_7 – ident: ref_5 – volume: 44 start-page: 5 year: 2021 ident: ref_6 article-title: PEMFC stack modeling based on Bayesian regularization BP neural network publication-title: J. Hefei Univ. Technol. – volume: 40 start-page: 94 year: 2020 ident: ref_21 article-title: Calculation and experiment of anti-collapse performance of titanium alloy tubing and casing publication-title: Nat. Gas Ind. – volume: 41 start-page: 38 year: 2012 ident: ref_3 article-title: Experimental study on the main influencing factors of casing collapse strength publication-title: Pet. Field Mach. – volume: 33 start-page: 1319 year: 2018 ident: ref_4 article-title: Research on the application of Bayesian neural network method in casing loss prediction publication-title: Prog. Geophys. – volume: 21 start-page: 3470 year: 2014 ident: ref_18 article-title: Theoretical and experimental analyses of casing collapsing strength under non-uniform loading publication-title: J. Cent. South Univ. doi: 10.1007/s11771-014-2324-6 – volume: 40 start-page: 736 year: 2018 ident: ref_2 article-title: Quantitative failure risk analysis of shale gas well casing deformation based on Bayesian network publication-title: Pet. Drill. Prod. Technol. – volume: 40 start-page: 4 year: 2017 ident: ref_8 article-title: Hidden layer node estimation algorithm of BP network based on simulated annealing publication-title: J. Hefei Univ. Technol. – volume: 57 start-page: 131 year: 2019 ident: ref_17 article-title: Application of Bayesian Regularization Artificial Neural Network in explosion risk analysis of fixed offshore platform publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2018.10.009 – volume: 17 start-page: 39 year: 2020 ident: ref_22 article-title: Model and optimization of the collapse strength of casing-cement ring combination under non-uniform ground stress publication-title: J. Yangtze Univ. – volume: 25 start-page: 75 year: 2015 ident: ref_13 article-title: Bayesian dynamic model for risk analysis of submarine oil and gas pipeline leakage accidents publication-title: Chin. Saf. Sci. J. – ident: ref_12 – volume: 2 start-page: 45 year: 2012 ident: ref_14 article-title: Application of Bayesian Normalization Algorithm in Reservoir Parameter Fitting publication-title: Internet Things Technol. – volume: 24 start-page: 48 year: 2001 ident: ref_1 article-title: Preliminary study on casing collapse strength under non-uniform load publication-title: Drill. Technol. – volume: 12 start-page: 67 year: 2018 ident: ref_11 article-title: Application of artificial neural networks for calibration of a reservoir model publication-title: Intell. Decis. Technol. – volume: 196 start-page: 107811 year: 2020 ident: ref_25 article-title: A geomechanical approach to casing collapse prediction in oil and gas wells aided by machine learning publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.107811 – volume: 161 start-page: 98 year: 2018 ident: ref_16 article-title: Robust data-driven model to study dispersion of vapor cloud in offshore facility publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2018.04.098 – ident: ref_15 – ident: ref_19 – volume: 47 start-page: 357 year: 2020 ident: ref_10 article-title: Production prediction of waterflooding reservoir based on artificial neural network publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(20)60055-6 – volume: 42 start-page: 7 year: 2020 ident: ref_9 article-title: Optimization of shale gas fracturing construction parameters based on PCA-BNN publication-title: J. Southwest Pet. Univ. – ident: ref_24 doi: 10.1109/SAMI.2017.7880337 – ident: ref_20 – volume: 40 start-page: 20 year: 2017 ident: ref_23 article-title: P110 steel grade Φ139.7mm × 10.54mm high collapse resistance performance analysis and collapse strength prediction publication-title: Welded Pipe |
| SSID | ssj0000913856 |
| Score | 2.1940024 |
| Snippet | With the application of complex fracturing and other complex technologies, external extrusion has become the main cause of casing damage, which makes non-API... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1327 |
| SubjectTerms | Algorithms Artificial intelligence Artificial neural networks Bayesian analysis Collapse Continuous extrusion Data transfer (computers) Empirical analysis Error analysis Expected values Gas industry Machine learning Mechanical properties Neural networks Prediction models Regularization Regularization methods Residual stress Training Trial and error methods Yield stress |
| Title | Prediction of Casing Collapse Strength Based on Bayesian Neural Network |
| URI | https://www.proquest.com/docview/2694025449 |
| Volume | 10 |
| WOSCitedRecordID | wos000831459000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M7P dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: KB. dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5RygADjwKiPCpLMNAhkDhNYk-IoBYQoooQA0yR4ziAhNrSFCQWfjs-x6UgIRaWLD4pUc6-u-989x3AARXMlbxTOFJFysFWTUcHR8yJ3JCHnHU4U64ZNhH1--zujic24VbassqpTTSGOh9KzJEfY8el4dPiJ6MXB6dG4e2qHaFRgzqyJPimdC_5yrEg5yULwoqV1Nfo_ng09gwuwyEy3_3QTzNsfEtv5b9ftQrLNqokp9U2WIM5NWjA0jeuwQas2VNckkNLNd1eh_NkjBc1qBwyLMiZwMwBwWSCGJWK4JX14GHySGLt63KihWLxrrDtkiCph35jv6oi34DbXvf27MKxoxUcSXkwcUIqqCpoREXuFyygCkleckmlK4NcZQVTyAvmdbzCAJ4sLLwwzHzOWK7cSPqbMD8YDtQWEN_PWCByrd9Mgw0NeLnIIh4FBdWBmPJEE9rT_5xKSzuO0y-eUw0_UCfpTCdN2P-SHVVkG79K7U51kdoDV6YzRWz_vbwDixQ7GEzF7S7MT8avag8W5NvkqRy3oB53-8lNC2pX8VHL7CZ8fnT1SnJ5ndx_AoHN0tg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5qK6gHtT7wUXVBBXsITTZNsnsQsb5aWksPPdRT2Gw2Kkhbm6r4o_yP7uThA8SbB88ZsiTzMc-dbwAOqGCm5PXIkMpTBo5qGjo4YoZnutzlrM6ZMpNlE163ywYD3ivAWz4Lg9cqc5uYGOpwJLFGXsOJy4RPi5-MHw3cGoXd1XyFRgqLtnp90SlbfNw61_o9pPTyon_WNLKtAoak3JkaLhVURdSjIrQj5lCF_CahpNKUTqiCiCmkxLLqVpTE-oEbWa4b2JyxUJmetPVrZ6BU11hnRSj1Wte9m4-iDpJsMsdNaVBtm5u18cRKEkHcWvPV8X23-4kzu1z6Z79hGRazqJmcpjAvQ0ENV2DhC5fiCpQzKxWTo4xKu7oKV70JNqIQfGQUkTOBlRGCxRIxjhXBlvzwdnpHGtqXh0QLNcSrwrFSgqQl-sRuekt-Dfp_8XXrUByOhmoDiG0HzBGhxm-gkymd0HMReNxzIqoDTWWJTajmavVlRquO2z0efJ1eIQT8Twhswv6H7DglE_lRqpKr3s8MSux_6n3r98d7MNfsX3f8Tqvb3oZ5itMaye3iChSnkye1A7PyeXofT3Yz8BLw_xgn71MwKoM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB58IXpQ6wMfVRdUsIfQZNMkuwcRtVZFKT148BY2m10VpK1NVfrT_HfubJKqIN48eM6QJdmPec83APtUMFfyhnakipSDo5qOcY6YE7khDzlrcKZcu2wiarfZ3R3vTMB7OQuDbZWlTrSKOu1JzJHXceLS8mnxui7aIjrN1nH_2cENUlhpLddp5BC5VqM3E75lR1dNc9cHlLbOb88unWLDgCMpD4ZOSAVVmkZUpL5mAVXIdZJKKl0ZpCrRTCE9ltfwtPX7k1B7YZj4nLFUuZH0zWsnYTpCznLbNdgZp3eQbpMFYU6I6vvcrfcHng0JcX_NVxP43QJYs9Za_Mc_ZAkWCl-anOTgr8CE6i7D_BeGxWWoFLorI4cFwXZtBS46AyxPISRJT5MzgfkSgikU0c8UwUJ99374QE6NhU-JEToVI4XDpgSpTMyJ7bx3fhVu_-Lr1mCq2-uqdSC-n7BApAbViQmxTJjPRRLxKNDUuJ_KExtQK684lgXZOu78eIpN0IVwiD_hsAF7Y9l-TjHyo1S1hEFcqJks_sTA5u-Pd2HWgCO-uWpfb8EcxREO23Jchanh4EVtw4x8HT5mgx2LYgLxH4PkA_LnMcI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Casing+Collapse+Strength+Based+on+Bayesian+Neural+Network&rft.jtitle=Processes&rft.au=Li%2C+Dongfeng&rft.au=Fan%2C+Heng&rft.au=Wang%2C+Rui&rft.au=Yang%2C+Shangyu&rft.date=2022-07-01&rft.issn=2227-9717&rft.eissn=2227-9717&rft.volume=10&rft.issue=7&rft.spage=1327&rft_id=info:doi/10.3390%2Fpr10071327&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_pr10071327 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon |