Data-Driven Detection of Stealth Cyber-Attacks in DC Microgrids
Cyber-physical systems such as microgrids contain numerous attack surfaces in communication links, sensors, and actuators forms. Manipulating the communication links and sensors is done to inject anomalous data that can be transmitted through the cyber layer along with the original data stream. The...
Uloženo v:
| Vydáno v: | IEEE systems journal Ročník 16; číslo 4; s. 6097 - 6106 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1932-8184, 1937-9234 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Cyber-physical systems such as microgrids contain numerous attack surfaces in communication links, sensors, and actuators forms. Manipulating the communication links and sensors is done to inject anomalous data that can be transmitted through the cyber layer along with the original data stream. The presence of malicious, anomalous data packets in the cyber layer of a dc microgrid can create hindrances in fulfilling the control objectives, leading to voltage instability and affecting load dispatch patterns. Hence, detecting anomalous data is essential for the restoration of system stability. This article answers two important research questions: 1) Which data-driven detection scheme offers the best detection performance against stealth cyber-attacks in dc microgrids? 2) What is the detection performance improvement when fusing two features (i.e., current and voltage data) for training compared with using a single feature (i.e., current)? Our investigations revealed that 1) adopting an unsupervised deep recurrent autoencoder anomaly detection scheme in dc microgrids offers superior detection performance compared with other benchmarks. The autoencoder is trained on benign data generated from a multisource dc microgrid model. 2) Fusing current and voltage data for training offers a 14.7% improvement. The efficacy of the results is verified using experimental data collected from a dc microgrid testbed when subjected to stealth cyber-attacks. |
|---|---|
| AbstractList | Cyber-physical systems such as microgrids contain numerous attack surfaces in communication links, sensors, and actuators forms. Manipulating the communication links and sensors is done to inject anomalous data that can be transmitted through the cyber layer along with the original data stream. The presence of malicious, anomalous data packets in the cyber layer of a dc microgrid can create hindrances in fulfilling the control objectives, leading to voltage instability and affecting load dispatch patterns. Hence, detecting anomalous data is essential for the restoration of system stability. This article answers two important research questions: 1) Which data-driven detection scheme offers the best detection performance against stealth cyber-attacks in dc microgrids? 2) What is the detection performance improvement when fusing two features (i.e., current and voltage data) for training compared with using a single feature (i.e., current)? Our investigations revealed that 1) adopting an unsupervised deep recurrent autoencoder anomaly detection scheme in dc microgrids offers superior detection performance compared with other benchmarks. The autoencoder is trained on benign data generated from a multisource dc microgrid model. 2) Fusing current and voltage data for training offers a 14.7% improvement. The efficacy of the results is verified using experimental data collected from a dc microgrid testbed when subjected to stealth cyber-attacks. |
| Author | Ismail, Muhammad Sahoo, Subham Takiddin, Abdulrahman Rath, Suman |
| Author_xml | – sequence: 1 givenname: Abdulrahman orcidid: 0000-0003-4793-003X surname: Takiddin fullname: Takiddin, Abdulrahman email: abdulrahman.takiddin@tamu.edu organization: Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA – sequence: 2 givenname: Suman orcidid: 0000-0002-9012-1919 surname: Rath fullname: Rath, Suman email: rathsuman@outlook.com organization: Department of Computer Science and Engineering, University of Nevada, Reno, NV, USA – sequence: 3 givenname: Muhammad orcidid: 0000-0002-8051-9747 surname: Ismail fullname: Ismail, Muhammad email: mismail@tntech.edu organization: Department of Computer Science, Tennessee Tech University, Cookeville, TN, USA – sequence: 4 givenname: Subham orcidid: 0000-0002-7916-028X surname: Sahoo fullname: Sahoo, Subham email: sssa@energy.aau.dk organization: Department of Energy, Aalborg University, Aalborg, Denmark |
| BookMark | eNp9kLtOAzEQRS0UJELgB6BZiXqDn1m7QtGGp4IoEgoqyzFjcAi7wXaQ8vc4D1FQUHmkuWc8c45Rp2kbQOiM4D4hWF0-TF4m0z7FlPYZkYxwfIC6RLGqVJTxzrampSSSH6HjGOcYCykq1UVXI5NMOQr-G5piBAls8m1TtK6YJDCL9F7U6xmEcpiSsR-x8DlVF4_ehvYt-Nd4gg6dWUQ43b899HxzPa3vyvHT7X09HJeWKpFKMZOSEqWAETVTnNKBAgUUKkeZIA4zaRVxbAASEyUctrmhcg8ElpY7w3roYjd3GdqvFcSk5-0qNPlLTSsuxUBwLnJK7lJ5vRgDOG19MpuLUjB-oQnWG116q0tvdOm9rozSP-gy-E8T1v9D5zvIA8AvoLLnvBH7AXhvdhA |
| CODEN | ISJEB2 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3537410 crossref_primary_10_1109_TII_2025_3563547 crossref_primary_10_3390_app15095021 crossref_primary_10_1109_TSG_2025_3548110 crossref_primary_10_3390_en16062852 crossref_primary_10_3390_en16165963 crossref_primary_10_1016_j_esr_2025_101654 crossref_primary_10_1038_s44287_025_00189_z crossref_primary_10_1016_j_conengprac_2024_106216 crossref_primary_10_1109_TSG_2024_3372643 crossref_primary_10_1109_COMST_2023_3304982 crossref_primary_10_1016_j_segan_2025_101798 crossref_primary_10_3390_en16124590 crossref_primary_10_1016_j_egyr_2024_02_010 crossref_primary_10_1016_j_segan_2024_101364 crossref_primary_10_1109_TII_2025_3545102 crossref_primary_10_1007_s00521_025_11090_z crossref_primary_10_1016_j_apenergy_2025_126118 crossref_primary_10_1109_TNSE_2024_3519515 crossref_primary_10_1016_j_segan_2024_101374 crossref_primary_10_1109_TSG_2024_3459967 crossref_primary_10_1109_JSYST_2023_3319643 crossref_primary_10_1109_ACCESS_2023_3335131 crossref_primary_10_1049_rpg2_70102 |
| Cites_doi | 10.1109/TPWRS.2017.2771278 10.1145/3230833.3230868 10.1109/ACCESS.2021.3055229 10.1109/TPEL.2018.2879886 10.1109/TII.2020.2964704 10.1109/IECON.2019.8927045 10.1109/CCECE.2018.8447683 10.1109/TSG.2015.2425222 10.1109/TSG.2017.2697440 10.1109/JSYST.2020.3020968 10.1109/JESTPE.2021.3051876 10.1007/978-3-031-01548-9 10.1109/TPEL.2014.2324579 10.1109/ACCESS.2021.3062840 10.1007/978-3-319-33331-1_16 10.1109/TIE.2019.2938497 10.1016/j.automatica.2009.10.021 10.1109/TSG.2017.2737938 10.1109/TAC.2019.2956021 10.1109/TSG.2019.2937366 10.1109/JESTPE.2019.2953480 10.1109/eGRID52793.2021.9662148 10.1145/3066167 10.1109/TII.2020.3024069 10.1109/TPEL.2019.2957071 10.1109/JSEN.2020.3027778 10.1109/TII.2017.2656905 10.1016/j.epsr.2021.107024 10.1109/ICIT.2017.7915444 10.1109/COMPEL52922.2021.9645984 10.1007/978-3-030-38557-6_10 10.1109/TSG.2018.2832544 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/JSYST.2022.3183140 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) Online IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1937-9234 |
| EndPage | 6106 |
| ExternalDocumentID | 10_1109_JSYST_2022_3183140 9818856 |
| Genre | orig-research |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX CITATION |
| ID | FETCH-LOGICAL-c295t-5b882199e319b942269e9e2e7f2351f038c91f36e80195f0c7f29f23e508c4fa3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000824746100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-8184 |
| IngestDate | Mon Jun 30 10:25:08 EDT 2025 Sat Nov 29 02:59:27 EST 2025 Tue Nov 18 20:50:31 EST 2025 Wed Aug 27 02:14:28 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-5b882199e319b942269e9e2e7f2351f038c91f36e80195f0c7f29f23e508c4fa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9012-1919 0000-0003-4793-003X 0000-0002-8051-9747 0000-0002-7916-028X |
| PQID | 2748565445 |
| PQPubID | 85494 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2748565445 crossref_citationtrail_10_1109_JSYST_2022_3183140 ieee_primary_9818856 crossref_primary_10_1109_JSYST_2022_3183140 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Dec. 2022-12-00 20221201 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-Dec. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE systems journal |
| PublicationTitleAbbrev | JSYST |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 takiddin (ref33) 2022 ref34 ref12 ref15 ref14 ref31 ref30 ref11 ref10 takiddin (ref37) 0 ref17 ref16 ref19 ref18 goodfellow (ref38) 2016 zhang (ref35) 2021; 17 marpaung (ref3) 0 ref24 ref23 krishna (ref32) 2016 ref26 ref25 ref20 ref22 ref21 takiddin (ref36) 0 ref28 ref27 ref8 sahoo (ref29) 2019; 34 ref7 ref9 ref4 rahman (ref2) 0 ref6 ref5 f (ref1) 2021; 9 |
| References_xml | – year: 2016 ident: ref38 publication-title: Deep Learning – ident: ref16 doi: 10.1109/TPWRS.2017.2771278 – ident: ref18 doi: 10.1145/3230833.3230868 – ident: ref10 doi: 10.1109/ACCESS.2021.3055229 – start-page: 1 year: 0 ident: ref2 article-title: Measurement of the carbon footprint for Bangladesh's electricity generation in 2009-15 publication-title: Proc Emerg Technol Comput Commun Electron – volume: 34 start-page: 8162 year: 2019 ident: ref29 article-title: A stealth cyber-attack detection strategy for DC microgrids publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2018.2879886 – ident: ref26 doi: 10.1109/TII.2020.2964704 – start-page: 779 year: 0 ident: ref3 article-title: The role of carbon capture and storage and renewable energy for CO2 mitigation in the Indonesian power sector publication-title: Proc Int Power Eng Conf – ident: ref14 doi: 10.1109/IECON.2019.8927045 – ident: ref19 doi: 10.1109/CCECE.2018.8447683 – start-page: 1 year: 0 ident: ref37 article-title: Deep autoencoder-based detection of electricity stealth cyberattacks in AMI networks publication-title: Proc Int Symp Signals Circuits Syst – ident: ref34 doi: 10.1109/TSG.2015.2425222 – ident: ref11 doi: 10.1109/TSG.2017.2697440 – ident: ref4 doi: 10.1109/JSYST.2020.3020968 – ident: ref8 doi: 10.1109/JESTPE.2021.3051876 – ident: ref23 doi: 10.1007/978-3-031-01548-9 – ident: ref27 doi: 10.1109/TPEL.2014.2324579 – volume: 9 start-page: 36154 year: 2021 ident: ref1 article-title: DC microgrid planning, operation, and control: A comprehensive review publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3062840 – start-page: 199 year: 2016 ident: ref32 article-title: ARIMA-based modeling and validation of consumption readings in power grids publication-title: Critical Information Infrastructures Security doi: 10.1007/978-3-319-33331-1_16 – ident: ref31 doi: 10.1109/TIE.2019.2938497 – ident: ref28 doi: 10.1016/j.automatica.2009.10.021 – ident: ref30 doi: 10.1109/TSG.2017.2737938 – ident: ref17 doi: 10.1109/TAC.2019.2956021 – ident: ref5 doi: 10.1109/TSG.2019.2937366 – ident: ref9 doi: 10.1109/JESTPE.2019.2953480 – ident: ref20 doi: 10.1109/eGRID52793.2021.9662148 – start-page: 1 year: 2022 ident: ref33 article-title: Deep autoencoder-based anomaly detection of electricity theft cyberattacks in smart grids publication-title: IEEE Syst J – ident: ref15 doi: 10.1145/3066167 – volume: 17 start-page: 4545 year: 2021 ident: ref35 article-title: Delay-tolerant predictive power compensation control for photovoltaic voltage regulation publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2020.3024069 – ident: ref6 doi: 10.1109/TPEL.2019.2957071 – ident: ref25 doi: 10.1109/JSEN.2020.3027778 – ident: ref12 doi: 10.1109/TII.2017.2656905 – ident: ref24 doi: 10.1016/j.epsr.2021.107024 – ident: ref7 doi: 10.1109/ICIT.2017.7915444 – ident: ref21 doi: 10.1109/COMPEL52922.2021.9645984 – start-page: 1590 year: 0 ident: ref36 article-title: Variational auto-encoder-based detection of electricity stealth cyber-attacks in AMI networks publication-title: Proc Eur Signal Process Conf – ident: ref22 doi: 10.1007/978-3-030-38557-6_10 – ident: ref13 doi: 10.1109/TSG.2018.2832544 |
| SSID | ssj0058579 |
| Score | 2.491277 |
| Snippet | Cyber-physical systems such as microgrids contain numerous attack surfaces in communication links, sensors, and actuators forms. Manipulating the communication... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6097 |
| SubjectTerms | Actuators Anomalies Anomaly detection Cyber-physical systems Cybersecurity Data transmission dc microgrids Detectors Distributed databases Distributed generation Electric potential Feature extraction long short-term memory (LSTM)-autoencoder Microgrids Packets (communication) Sensors Systems stability Training Voltage Voltage control |
| Title | Data-Driven Detection of Stealth Cyber-Attacks in DC Microgrids |
| URI | https://ieeexplore.ieee.org/document/9818856 https://www.proquest.com/docview/2748565445 |
| Volume | 16 |
| WOSCitedRecordID | wos000824746100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1937-9234 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0058579 issn: 1932-8184 databaseCode: RIE dateStart: 20070101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8aAHX1WsVtmDN027701OUlqLiBahFepp2c1OtFBa2W4F_72ZdFsKiuBtYSZhmSSTb5L5JgBXmEY8C2TApHSR-aHMGFcJZ4kfeTLjiYYUhij8GPX7fDQSzxW4WXNhENEkn2GTPs1dfjaTCzoqawm9u_Ag3IKtKAqXXK2V19Wo19TVIzzCtJq_IsjYovUweB0MdSjouk2awQ4ddGxsQuZVlR-u2Owvvf3__dkB7JU40movB_4QKjg9gt2N6oI1uO0mRcK6Ofkzq4uFSbqaWjNlURLvpHi3Ol8p5qxdFES0t8Zaq2M9UYbeWz7O5sfw0rsbdu5Z-V4Ck64IChakGi47QqBeVqkgiqxAgS5GyvUCR9kel8JRXoicWILKllogtAw1SJO-SrwTqE5nUzwFi2CXDkxc5ae2L2Wacro_U35m84RLL6qDszJgLMti4vSmxSQ2QYUtYmP0mIwel0avw_W6zceylMaf2jUy81qztHAdGqtxisvVNo91ZK1FVFbo7PdW57BDfS_TUBpQLfIFXsC2_CzG8_zSTKRvc6TDXw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90CuqD3-L87INvGtePdE2eRDZl6hyCE_SptOlFB2OTrgr-9-aybgwUwbfCXUi5JJffJfe7AJxgGoksVCFTykfG6ypjQieCJTwKVCYSAyksUbgddTri-Vk-zMHZlAuDiDb5DM_p097lZ0P1QUdlNWl2FxHW52Eh5Nx3x2ytid81uNdW1iNEwowin1BkXFm7fXx57Jpg0PfPaQ57dNQxsw3Zd1V-OGO7w1yv_e_f1mG1RJLO5XjoN2AOB5uwMlNfcAsumkmRsGZOHs1pYmHTrgbOUDuUxtsv3pzGV4o5uywKoto7PaPVcO4pR-8172WjbXi6vuo2Wqx8MYEpX4YFC1MDmD0p0SysVBJJVqJEHyPtB6Gn3UAo6emgjoJ4gtpVRiCNDA1MU1wnwQ5UBsMB7oJDwMuEJr7mqcuVSlNBN2iaZ65IhAqiKngTA8aqLCdOr1r0YxtWuDK2Ro_J6HFp9CqcTtu8j4tp_Km9RWaeapYWrsLBZJzicr2NYhNbGxEVFtr7vdUxLLW69-24fdO524dl6meclHIAlSL_wENYVJ9Fb5Qf2Un1Dc07xqY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Detection+of+Stealth+Cyber-Attacks+in+DC+Microgrids&rft.jtitle=IEEE+systems+journal&rft.au=Takiddin%2C+Abdulrahman&rft.au=Rath%2C+Suman&rft.au=Ismail%2C+Muhammad&rft.au=Sahoo%2C+Subham&rft.date=2022-12-01&rft.issn=1932-8184&rft.eissn=1937-9234&rft.volume=16&rft.issue=4&rft.spage=6097&rft.epage=6106&rft_id=info:doi/10.1109%2FJSYST.2022.3183140&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSYST_2022_3183140 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-8184&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-8184&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-8184&client=summon |