Data-Driven Detection of Stealth Cyber-Attacks in DC Microgrids

Cyber-physical systems such as microgrids contain numerous attack surfaces in communication links, sensors, and actuators forms. Manipulating the communication links and sensors is done to inject anomalous data that can be transmitted through the cyber layer along with the original data stream. The...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE systems journal Ročník 16; číslo 4; s. 6097 - 6106
Hlavní autoři: Takiddin, Abdulrahman, Rath, Suman, Ismail, Muhammad, Sahoo, Subham
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1932-8184, 1937-9234
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Cyber-physical systems such as microgrids contain numerous attack surfaces in communication links, sensors, and actuators forms. Manipulating the communication links and sensors is done to inject anomalous data that can be transmitted through the cyber layer along with the original data stream. The presence of malicious, anomalous data packets in the cyber layer of a dc microgrid can create hindrances in fulfilling the control objectives, leading to voltage instability and affecting load dispatch patterns. Hence, detecting anomalous data is essential for the restoration of system stability. This article answers two important research questions: 1) Which data-driven detection scheme offers the best detection performance against stealth cyber-attacks in dc microgrids? 2) What is the detection performance improvement when fusing two features (i.e., current and voltage data) for training compared with using a single feature (i.e., current)? Our investigations revealed that 1) adopting an unsupervised deep recurrent autoencoder anomaly detection scheme in dc microgrids offers superior detection performance compared with other benchmarks. The autoencoder is trained on benign data generated from a multisource dc microgrid model. 2) Fusing current and voltage data for training offers a 14.7% improvement. The efficacy of the results is verified using experimental data collected from a dc microgrid testbed when subjected to stealth cyber-attacks.
AbstractList Cyber-physical systems such as microgrids contain numerous attack surfaces in communication links, sensors, and actuators forms. Manipulating the communication links and sensors is done to inject anomalous data that can be transmitted through the cyber layer along with the original data stream. The presence of malicious, anomalous data packets in the cyber layer of a dc microgrid can create hindrances in fulfilling the control objectives, leading to voltage instability and affecting load dispatch patterns. Hence, detecting anomalous data is essential for the restoration of system stability. This article answers two important research questions: 1) Which data-driven detection scheme offers the best detection performance against stealth cyber-attacks in dc microgrids? 2) What is the detection performance improvement when fusing two features (i.e., current and voltage data) for training compared with using a single feature (i.e., current)? Our investigations revealed that 1) adopting an unsupervised deep recurrent autoencoder anomaly detection scheme in dc microgrids offers superior detection performance compared with other benchmarks. The autoencoder is trained on benign data generated from a multisource dc microgrid model. 2) Fusing current and voltage data for training offers a 14.7% improvement. The efficacy of the results is verified using experimental data collected from a dc microgrid testbed when subjected to stealth cyber-attacks.
Author Ismail, Muhammad
Sahoo, Subham
Takiddin, Abdulrahman
Rath, Suman
Author_xml – sequence: 1
  givenname: Abdulrahman
  orcidid: 0000-0003-4793-003X
  surname: Takiddin
  fullname: Takiddin, Abdulrahman
  email: abdulrahman.takiddin@tamu.edu
  organization: Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
– sequence: 2
  givenname: Suman
  orcidid: 0000-0002-9012-1919
  surname: Rath
  fullname: Rath, Suman
  email: rathsuman@outlook.com
  organization: Department of Computer Science and Engineering, University of Nevada, Reno, NV, USA
– sequence: 3
  givenname: Muhammad
  orcidid: 0000-0002-8051-9747
  surname: Ismail
  fullname: Ismail, Muhammad
  email: mismail@tntech.edu
  organization: Department of Computer Science, Tennessee Tech University, Cookeville, TN, USA
– sequence: 4
  givenname: Subham
  orcidid: 0000-0002-7916-028X
  surname: Sahoo
  fullname: Sahoo, Subham
  email: sssa@energy.aau.dk
  organization: Department of Energy, Aalborg University, Aalborg, Denmark
BookMark eNp9kLtOAzEQRS0UJELgB6BZiXqDn1m7QtGGp4IoEgoqyzFjcAi7wXaQ8vc4D1FQUHmkuWc8c45Rp2kbQOiM4D4hWF0-TF4m0z7FlPYZkYxwfIC6RLGqVJTxzrampSSSH6HjGOcYCykq1UVXI5NMOQr-G5piBAls8m1TtK6YJDCL9F7U6xmEcpiSsR-x8DlVF4_ehvYt-Nd4gg6dWUQ43b899HxzPa3vyvHT7X09HJeWKpFKMZOSEqWAETVTnNKBAgUUKkeZIA4zaRVxbAASEyUctrmhcg8ElpY7w3roYjd3GdqvFcSk5-0qNPlLTSsuxUBwLnJK7lJ5vRgDOG19MpuLUjB-oQnWG116q0tvdOm9rozSP-gy-E8T1v9D5zvIA8AvoLLnvBH7AXhvdhA
CODEN ISJEB2
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3537410
crossref_primary_10_1109_TII_2025_3563547
crossref_primary_10_3390_app15095021
crossref_primary_10_1109_TSG_2025_3548110
crossref_primary_10_3390_en16062852
crossref_primary_10_3390_en16165963
crossref_primary_10_1016_j_esr_2025_101654
crossref_primary_10_1038_s44287_025_00189_z
crossref_primary_10_1016_j_conengprac_2024_106216
crossref_primary_10_1109_TSG_2024_3372643
crossref_primary_10_1109_COMST_2023_3304982
crossref_primary_10_1016_j_segan_2025_101798
crossref_primary_10_3390_en16124590
crossref_primary_10_1016_j_egyr_2024_02_010
crossref_primary_10_1016_j_segan_2024_101364
crossref_primary_10_1109_TII_2025_3545102
crossref_primary_10_1007_s00521_025_11090_z
crossref_primary_10_1016_j_apenergy_2025_126118
crossref_primary_10_1109_TNSE_2024_3519515
crossref_primary_10_1016_j_segan_2024_101374
crossref_primary_10_1109_TSG_2024_3459967
crossref_primary_10_1109_JSYST_2023_3319643
crossref_primary_10_1109_ACCESS_2023_3335131
crossref_primary_10_1049_rpg2_70102
Cites_doi 10.1109/TPWRS.2017.2771278
10.1145/3230833.3230868
10.1109/ACCESS.2021.3055229
10.1109/TPEL.2018.2879886
10.1109/TII.2020.2964704
10.1109/IECON.2019.8927045
10.1109/CCECE.2018.8447683
10.1109/TSG.2015.2425222
10.1109/TSG.2017.2697440
10.1109/JSYST.2020.3020968
10.1109/JESTPE.2021.3051876
10.1007/978-3-031-01548-9
10.1109/TPEL.2014.2324579
10.1109/ACCESS.2021.3062840
10.1007/978-3-319-33331-1_16
10.1109/TIE.2019.2938497
10.1016/j.automatica.2009.10.021
10.1109/TSG.2017.2737938
10.1109/TAC.2019.2956021
10.1109/TSG.2019.2937366
10.1109/JESTPE.2019.2953480
10.1109/eGRID52793.2021.9662148
10.1145/3066167
10.1109/TII.2020.3024069
10.1109/TPEL.2019.2957071
10.1109/JSEN.2020.3027778
10.1109/TII.2017.2656905
10.1016/j.epsr.2021.107024
10.1109/ICIT.2017.7915444
10.1109/COMPEL52922.2021.9645984
10.1007/978-3-030-38557-6_10
10.1109/TSG.2018.2832544
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JSYST.2022.3183140
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) Online
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1937-9234
EndPage 6106
ExternalDocumentID 10_1109_JSYST_2022_3183140
9818856
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c295t-5b882199e319b942269e9e2e7f2351f038c91f36e80195f0c7f29f23e508c4fa3
IEDL.DBID RIE
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000824746100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-8184
IngestDate Mon Jun 30 10:25:08 EDT 2025
Sat Nov 29 02:59:27 EST 2025
Tue Nov 18 20:50:31 EST 2025
Wed Aug 27 02:14:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-5b882199e319b942269e9e2e7f2351f038c91f36e80195f0c7f29f23e508c4fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9012-1919
0000-0003-4793-003X
0000-0002-8051-9747
0000-0002-7916-028X
PQID 2748565445
PQPubID 85494
PageCount 10
ParticipantIDs proquest_journals_2748565445
crossref_citationtrail_10_1109_JSYST_2022_3183140
ieee_primary_9818856
crossref_primary_10_1109_JSYST_2022_3183140
PublicationCentury 2000
PublicationDate 2022-Dec.
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE systems journal
PublicationTitleAbbrev JSYST
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
takiddin (ref33) 2022
ref34
ref12
ref15
ref14
ref31
ref30
ref11
ref10
takiddin (ref37) 0
ref17
ref16
ref19
ref18
goodfellow (ref38) 2016
zhang (ref35) 2021; 17
marpaung (ref3) 0
ref24
ref23
krishna (ref32) 2016
ref26
ref25
ref20
ref22
ref21
takiddin (ref36) 0
ref28
ref27
ref8
sahoo (ref29) 2019; 34
ref7
ref9
ref4
rahman (ref2) 0
ref6
ref5
f (ref1) 2021; 9
References_xml – year: 2016
  ident: ref38
  publication-title: Deep Learning
– ident: ref16
  doi: 10.1109/TPWRS.2017.2771278
– ident: ref18
  doi: 10.1145/3230833.3230868
– ident: ref10
  doi: 10.1109/ACCESS.2021.3055229
– start-page: 1
  year: 0
  ident: ref2
  article-title: Measurement of the carbon footprint for Bangladesh's electricity generation in 2009-15
  publication-title: Proc Emerg Technol Comput Commun Electron
– volume: 34
  start-page: 8162
  year: 2019
  ident: ref29
  article-title: A stealth cyber-attack detection strategy for DC microgrids
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2018.2879886
– ident: ref26
  doi: 10.1109/TII.2020.2964704
– start-page: 779
  year: 0
  ident: ref3
  article-title: The role of carbon capture and storage and renewable energy for CO2 mitigation in the Indonesian power sector
  publication-title: Proc Int Power Eng Conf
– ident: ref14
  doi: 10.1109/IECON.2019.8927045
– ident: ref19
  doi: 10.1109/CCECE.2018.8447683
– start-page: 1
  year: 0
  ident: ref37
  article-title: Deep autoencoder-based detection of electricity stealth cyberattacks in AMI networks
  publication-title: Proc Int Symp Signals Circuits Syst
– ident: ref34
  doi: 10.1109/TSG.2015.2425222
– ident: ref11
  doi: 10.1109/TSG.2017.2697440
– ident: ref4
  doi: 10.1109/JSYST.2020.3020968
– ident: ref8
  doi: 10.1109/JESTPE.2021.3051876
– ident: ref23
  doi: 10.1007/978-3-031-01548-9
– ident: ref27
  doi: 10.1109/TPEL.2014.2324579
– volume: 9
  start-page: 36154
  year: 2021
  ident: ref1
  article-title: DC microgrid planning, operation, and control: A comprehensive review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3062840
– start-page: 199
  year: 2016
  ident: ref32
  article-title: ARIMA-based modeling and validation of consumption readings in power grids
  publication-title: Critical Information Infrastructures Security
  doi: 10.1007/978-3-319-33331-1_16
– ident: ref31
  doi: 10.1109/TIE.2019.2938497
– ident: ref28
  doi: 10.1016/j.automatica.2009.10.021
– ident: ref30
  doi: 10.1109/TSG.2017.2737938
– ident: ref17
  doi: 10.1109/TAC.2019.2956021
– ident: ref5
  doi: 10.1109/TSG.2019.2937366
– ident: ref9
  doi: 10.1109/JESTPE.2019.2953480
– ident: ref20
  doi: 10.1109/eGRID52793.2021.9662148
– start-page: 1
  year: 2022
  ident: ref33
  article-title: Deep autoencoder-based anomaly detection of electricity theft cyberattacks in smart grids
  publication-title: IEEE Syst J
– ident: ref15
  doi: 10.1145/3066167
– volume: 17
  start-page: 4545
  year: 2021
  ident: ref35
  article-title: Delay-tolerant predictive power compensation control for photovoltaic voltage regulation
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2020.3024069
– ident: ref6
  doi: 10.1109/TPEL.2019.2957071
– ident: ref25
  doi: 10.1109/JSEN.2020.3027778
– ident: ref12
  doi: 10.1109/TII.2017.2656905
– ident: ref24
  doi: 10.1016/j.epsr.2021.107024
– ident: ref7
  doi: 10.1109/ICIT.2017.7915444
– ident: ref21
  doi: 10.1109/COMPEL52922.2021.9645984
– start-page: 1590
  year: 0
  ident: ref36
  article-title: Variational auto-encoder-based detection of electricity stealth cyber-attacks in AMI networks
  publication-title: Proc Eur Signal Process Conf
– ident: ref22
  doi: 10.1007/978-3-030-38557-6_10
– ident: ref13
  doi: 10.1109/TSG.2018.2832544
SSID ssj0058579
Score 2.491277
Snippet Cyber-physical systems such as microgrids contain numerous attack surfaces in communication links, sensors, and actuators forms. Manipulating the communication...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6097
SubjectTerms Actuators
Anomalies
Anomaly detection
Cyber-physical systems
Cybersecurity
Data transmission
dc microgrids
Detectors
Distributed databases
Distributed generation
Electric potential
Feature extraction
long short-term memory (LSTM)-autoencoder
Microgrids
Packets (communication)
Sensors
Systems stability
Training
Voltage
Voltage control
Title Data-Driven Detection of Stealth Cyber-Attacks in DC Microgrids
URI https://ieeexplore.ieee.org/document/9818856
https://www.proquest.com/docview/2748565445
Volume 16
WOSCitedRecordID wos000824746100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1937-9234
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0058579
  issn: 1932-8184
  databaseCode: RIE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8aAHX1WsVtmDN027701OUlqLiBahFepp2c1OtFBa2W4F_72ZdFsKiuBtYSZhmSSTb5L5JgBXmEY8C2TApHSR-aHMGFcJZ4kfeTLjiYYUhij8GPX7fDQSzxW4WXNhENEkn2GTPs1dfjaTCzoqawm9u_Ag3IKtKAqXXK2V19Wo19TVIzzCtJq_IsjYovUweB0MdSjouk2awQ4ddGxsQuZVlR-u2Owvvf3__dkB7JU40movB_4QKjg9gt2N6oI1uO0mRcK6Ofkzq4uFSbqaWjNlURLvpHi3Ol8p5qxdFES0t8Zaq2M9UYbeWz7O5sfw0rsbdu5Z-V4Ck64IChakGi47QqBeVqkgiqxAgS5GyvUCR9kel8JRXoicWILKllogtAw1SJO-SrwTqE5nUzwFi2CXDkxc5ae2L2Wacro_U35m84RLL6qDszJgLMti4vSmxSQ2QYUtYmP0mIwel0avw_W6zceylMaf2jUy81qztHAdGqtxisvVNo91ZK1FVFbo7PdW57BDfS_TUBpQLfIFXsC2_CzG8_zSTKRvc6TDXw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90CuqD3-L87INvGtePdE2eRDZl6hyCE_SptOlFB2OTrgr-9-aybgwUwbfCXUi5JJffJfe7AJxgGoksVCFTykfG6ypjQieCJTwKVCYSAyksUbgddTri-Vk-zMHZlAuDiDb5DM_p097lZ0P1QUdlNWl2FxHW52Eh5Nx3x2ytid81uNdW1iNEwowin1BkXFm7fXx57Jpg0PfPaQ57dNQxsw3Zd1V-OGO7w1yv_e_f1mG1RJLO5XjoN2AOB5uwMlNfcAsumkmRsGZOHs1pYmHTrgbOUDuUxtsv3pzGV4o5uywKoto7PaPVcO4pR-8172WjbXi6vuo2Wqx8MYEpX4YFC1MDmD0p0SysVBJJVqJEHyPtB6Gn3UAo6emgjoJ4gtpVRiCNDA1MU1wnwQ5UBsMB7oJDwMuEJr7mqcuVSlNBN2iaZ65IhAqiKngTA8aqLCdOr1r0YxtWuDK2Ro_J6HFp9CqcTtu8j4tp_Km9RWaeapYWrsLBZJzicr2NYhNbGxEVFtr7vdUxLLW69-24fdO524dl6meclHIAlSL_wENYVJ9Fb5Qf2Un1Dc07xqY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Detection+of+Stealth+Cyber-Attacks+in+DC+Microgrids&rft.jtitle=IEEE+systems+journal&rft.au=Takiddin%2C+Abdulrahman&rft.au=Rath%2C+Suman&rft.au=Ismail%2C+Muhammad&rft.au=Sahoo%2C+Subham&rft.date=2022-12-01&rft.issn=1932-8184&rft.eissn=1937-9234&rft.volume=16&rft.issue=4&rft.spage=6097&rft.epage=6106&rft_id=info:doi/10.1109%2FJSYST.2022.3183140&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSYST_2022_3183140
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-8184&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-8184&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-8184&client=summon