Blockchain and Machine Learning for Communications and Networking Systems

Recently, with the rapid development of information and communication technologies, the infrastructures, resources, end devices, and applications in communications and networking systems are becoming much more complex and heterogeneous. In addition, the large volume of data and massive end devices m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Communications surveys and tutorials Ročník 22; číslo 2; s. 1392 - 1431
Hlavní autoři: Liu, Yiming, Yu, F. Richard, Li, Xi, Ji, Hong, Leung, Victor C. M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.01.2020
Témata:
ISSN:2373-745X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recently, with the rapid development of information and communication technologies, the infrastructures, resources, end devices, and applications in communications and networking systems are becoming much more complex and heterogeneous. In addition, the large volume of data and massive end devices may bring serious security, privacy, services provisioning, and network management challenges. In order to achieve decentralized, secure, intelligent, and efficient network operation and management, the joint consideration of blockchain and machine learning (ML) may bring significant benefits and have attracted great interests from both academia and industry. On one hand, blockchain can significantly facilitate training data and ML model sharing, decentralized intelligence, security, privacy, and trusted decision-making of ML. On the other hand, ML will have significant impacts on the development of blockchain in communications and networking systems, including energy and resource efficiency, scalability, security, privacy, and intelligent smart contracts. However, some essential open issues and challenges that remain to be addressed before the widespread deployment of the integration of blockchain and ML, including resource management, data processing, scalable operation, and security issues. In this paper, we present a survey on the existing works for blockchain and ML technologies. We identify several important aspects of integrating blockchain and ML, including overview, benefits, and applications. Then we discuss some open issues, challenges, and broader perspectives that need to be addressed to jointly consider blockchain and ML for communications and networking systems.
AbstractList Recently, with the rapid development of information and communication technologies, the infrastructures, resources, end devices, and applications in communications and networking systems are becoming much more complex and heterogeneous. In addition, the large volume of data and massive end devices may bring serious security, privacy, services provisioning, and network management challenges. In order to achieve decentralized, secure, intelligent, and efficient network operation and management, the joint consideration of blockchain and machine learning (ML) may bring significant benefits and have attracted great interests from both academia and industry. On one hand, blockchain can significantly facilitate training data and ML model sharing, decentralized intelligence, security, privacy, and trusted decision-making of ML. On the other hand, ML will have significant impacts on the development of blockchain in communications and networking systems, including energy and resource efficiency, scalability, security, privacy, and intelligent smart contracts. However, some essential open issues and challenges that remain to be addressed before the widespread deployment of the integration of blockchain and ML, including resource management, data processing, scalable operation, and security issues. In this paper, we present a survey on the existing works for blockchain and ML technologies. We identify several important aspects of integrating blockchain and ML, including overview, benefits, and applications. Then we discuss some open issues, challenges, and broader perspectives that need to be addressed to jointly consider blockchain and ML for communications and networking systems.
Author Liu, Yiming
Leung, Victor C. M.
Ji, Hong
Yu, F. Richard
Li, Xi
Author_xml – sequence: 1
  givenname: Yiming
  orcidid: 0000-0001-8824-4007
  surname: Liu
  fullname: Liu, Yiming
  email: liuyiming@bput.edu.cn
  organization: Ministry of Education, Key Laboratory of Universal Wireless Communications, Beijing
– sequence: 2
  givenname: F. Richard
  orcidid: 0000-0003-1006-7594
  surname: Yu
  fullname: Yu, F. Richard
  email: richard.yu@carleton.ca
  organization: Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada
– sequence: 3
  givenname: Xi
  orcidid: 0000-0003-0466-1933
  surname: Li
  fullname: Li, Xi
  email: lixi@bupt.edu.cn
  organization: Ministry of Education, Key Laboratory of Universal Wireless Communications, Beijing
– sequence: 4
  givenname: Hong
  orcidid: 0000-0002-1640-2894
  surname: Ji
  fullname: Ji, Hong
  email: jihong@bupt.edu.cn
  organization: Ministry of Education, Key Laboratory of Universal Wireless Communications, Beijing
– sequence: 5
  givenname: Victor C. M.
  orcidid: 0000-0003-3529-2640
  surname: Leung
  fullname: Leung, Victor C. M.
  email: vleung@ieee.org
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
BookMark eNotjslOwzAURS0EEm3hB2CTH0h4nuJ4CRFDpZQuWiR2lUdq2tgoDkL9e8qwOptzru4UncYUHUJXGCqMQd60y8VqXREgUBEpuMT4BE0IFbQUjL-eo2nO7wCMMAkTNL_bJ7MzWxVioaItFspsQ3RF59QQQ3wrfBqKNvX9ZwxGjSHF_Os9u_ErDbsfY3XIo-vzBTrzap_d5T9n6OXhft0-ld3ycd7edqUhko8lV5oapbEB0No6rE3dUO2cZdgIxa09XmukkFIY3PjGU2W9l1IfYw5M1XSGrv92g3Nu8zGEXg2HjQQQDGr6DanhTU8
CitedBy_id crossref_primary_10_3390_e27090933
crossref_primary_10_1109_COMST_2023_3315374
crossref_primary_10_1007_s11042_021_11604_6
crossref_primary_10_3233_JIFS_213482
crossref_primary_10_3390_s21093194
crossref_primary_10_1109_JIOT_2021_3135342
crossref_primary_10_1145_3659946
crossref_primary_10_32628_CSEIT241051055
crossref_primary_10_1109_ACCESS_2024_3384460
crossref_primary_10_1109_COMST_2023_3280465
crossref_primary_10_1109_JIOT_2020_3032162
crossref_primary_10_1109_ACCESS_2022_3210584
crossref_primary_10_3390_s24103111
crossref_primary_10_1109_ACCESS_2023_3344669
crossref_primary_10_1016_j_aei_2025_103616
crossref_primary_10_1109_COMST_2021_3115797
crossref_primary_10_1109_JIOT_2020_3027482
crossref_primary_10_1109_TCOMM_2023_3337376
crossref_primary_10_1007_s10660_024_09923_5
crossref_primary_10_1145_3700641
crossref_primary_10_1016_j_icte_2021_08_014
crossref_primary_10_1016_j_icte_2025_04_001
crossref_primary_10_1109_TQE_2024_3481280
crossref_primary_10_1016_j_jnca_2021_103245
crossref_primary_10_1155_2024_9979371
crossref_primary_10_3390_biomedicines11082225
crossref_primary_10_1109_JIOT_2022_3181556
crossref_primary_10_1109_JIOT_2023_3315673
crossref_primary_10_1080_23311975_2025_2474209
crossref_primary_10_1109_TGCN_2021_3132561
crossref_primary_10_1016_j_comnet_2023_110137
crossref_primary_10_1016_j_jclepro_2023_138466
crossref_primary_10_3390_fi16120449
crossref_primary_10_1109_ACCESS_2024_3482389
crossref_primary_10_1038_s41598_022_17671_5
crossref_primary_10_1109_ACCESS_2020_3007251
crossref_primary_10_1109_ACCESS_2024_3462735
crossref_primary_10_1109_JIOT_2022_3197989
crossref_primary_10_1002_spy2_344
crossref_primary_10_1109_ACCESS_2025_3562126
crossref_primary_10_3390_en16010528
crossref_primary_10_1080_19393555_2023_2218852
crossref_primary_10_1109_MNET_2024_3412161
crossref_primary_10_1007_s11276_024_03674_9
crossref_primary_10_1016_j_jnca_2020_102784
crossref_primary_10_3390_network3030017
crossref_primary_10_1002_ett_4133
crossref_primary_10_1016_j_cosrev_2022_100492
crossref_primary_10_1109_TII_2022_3179272
crossref_primary_10_1145_3441692
crossref_primary_10_1109_JAS_2023_123450
crossref_primary_10_1007_s13198_024_02596_1
crossref_primary_10_1109_MNET_115_2200014
crossref_primary_10_3390_computers12010006
crossref_primary_10_1007_s12083_023_01551_4
crossref_primary_10_1007_s10586_023_04108_5
crossref_primary_10_1016_j_jii_2022_100404
crossref_primary_10_1016_j_jksuci_2024_102207
crossref_primary_10_3390_s22239074
crossref_primary_10_1007_s10845_024_02535_8
crossref_primary_10_3390_fi15060200
crossref_primary_10_1007_s10479_023_05761_0
crossref_primary_10_1109_COMST_2022_3199544
crossref_primary_10_1109_TNSM_2022_3212917
crossref_primary_10_1186_s13677_021_00247_5
crossref_primary_10_1016_j_comcom_2021_07_009
crossref_primary_10_1109_JIOT_2021_3063686
crossref_primary_10_1109_ACCESS_2022_3203568
crossref_primary_10_1051_e3sconf_202449102024
crossref_primary_10_1109_TVT_2023_3344934
crossref_primary_10_1016_j_dcan_2024_09_005
crossref_primary_10_1016_j_jpdc_2020_06_003
crossref_primary_10_1109_TSMC_2023_3348449
crossref_primary_10_1007_s11276_021_02748_2
crossref_primary_10_1016_j_compeleceng_2025_110559
crossref_primary_10_1007_s11042_024_19993_0
crossref_primary_10_1109_MNET_011_2000508
crossref_primary_10_1007_s10796_022_10279_0
crossref_primary_10_1016_j_comnet_2021_108594
crossref_primary_10_1109_JPROC_2024_3386257
crossref_primary_10_3390_s25154793
crossref_primary_10_1109_COMST_2022_3175453
crossref_primary_10_1051_itmconf_20246301009
crossref_primary_10_1109_ACCESS_2022_3198956
crossref_primary_10_1109_COMST_2020_3045136
crossref_primary_10_1002_asi_70009
crossref_primary_10_1109_JIOT_2023_3279830
crossref_primary_10_1016_j_cosrev_2023_100575
crossref_primary_10_1109_TCSS_2023_3268592
crossref_primary_10_3390_electronics13122295
crossref_primary_10_1016_j_iot_2024_101276
crossref_primary_10_1109_COMST_2022_3189962
crossref_primary_10_1109_TCC_2022_3201544
crossref_primary_10_2139_ssrn_5164958
crossref_primary_10_1109_JIOT_2020_3028368
crossref_primary_10_1109_JIOT_2022_3222521
crossref_primary_10_1109_JIOT_2023_3268705
crossref_primary_10_1007_s10773_022_05097_8
crossref_primary_10_1016_j_sysarc_2020_101877
crossref_primary_10_1109_ACCESS_2025_3560781
crossref_primary_10_1109_COMST_2022_3208196
crossref_primary_10_1109_ACCESS_2023_3319083
crossref_primary_10_1186_s40854_023_00525_y
crossref_primary_10_3390_fi13020048
crossref_primary_10_1109_TNSM_2021_3122147
crossref_primary_10_1016_j_resglo_2025_100275
crossref_primary_10_1109_ACCESS_2020_3003894
crossref_primary_10_1007_s10207_022_00653_z
crossref_primary_10_1016_j_jnca_2023_103677
crossref_primary_10_1016_j_icte_2022_10_005
crossref_primary_10_1109_TITS_2025_3553403
crossref_primary_10_7717_peerj_cs_2268
crossref_primary_10_1109_COMST_2021_3086014
crossref_primary_10_3390_su142316002
crossref_primary_10_1007_s11276_025_03999_z
crossref_primary_10_1051_itmconf_20246301011
crossref_primary_10_1002_ett_5009
crossref_primary_10_1016_j_engappai_2022_105581
crossref_primary_10_1007_s10586_023_04257_7
crossref_primary_10_1109_TEM_2021_3053655
crossref_primary_10_1109_ACCESS_2024_3429285
crossref_primary_10_1002_ett_4692
crossref_primary_10_1016_j_cosrev_2023_100590
crossref_primary_10_1109_TVT_2022_3150793
crossref_primary_10_1145_3560816
crossref_primary_10_1109_JIOT_2023_3347492
crossref_primary_10_1016_j_scs_2020_102364
crossref_primary_10_1109_ACCESS_2022_3151150
crossref_primary_10_1016_j_procs_2023_11_037
crossref_primary_10_1109_TII_2021_3097131
crossref_primary_10_1109_JIOT_2020_3025916
crossref_primary_10_3389_fbloc_2023_1206330
crossref_primary_10_1109_COMST_2022_3204702
crossref_primary_10_1109_COMST_2023_3305312
crossref_primary_10_1109_TMC_2023_3325334
crossref_primary_10_3390_en15218304
crossref_primary_10_1016_j_apenergy_2023_121321
crossref_primary_10_1016_j_comnet_2025_111284
crossref_primary_10_3233_JIFS_212455
crossref_primary_10_1016_j_infsof_2023_107221
crossref_primary_10_1109_TITS_2021_3106545
crossref_primary_10_1002_dac_5675
crossref_primary_10_1109_TMC_2024_3382776
crossref_primary_10_1093_nsr_nwab069
crossref_primary_10_1109_COMST_2022_3217613
ContentType Journal Article
DBID 97E
RIA
RIE
DOI 10.1109/COMST.2020.2975911
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2373-745X
EndPage 1431
ExternalDocumentID 9007406
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61671088; 61771070
  funderid: 10.13039/501100001809
– fundername: Canadian Natural Sciences and Engineering Research Council
  funderid: 10.13039/501100000038
– fundername: Chinese National Engineering Laboratory for Big Data System Computing Technology
GroupedDBID 0R~
29I
2WC
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
O9-
OCL
P2P
RIA
RIE
RNS
ID FETCH-LOGICAL-c295t-5ab3cab1c00bbde1bc683beed41c7a5dd004897997c18f8f3adff99b295504a63
IEDL.DBID RIE
ISICitedReferencesCount 217
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538038400020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:37:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-5ab3cab1c00bbde1bc683beed41c7a5dd004897997c18f8f3adff99b295504a63
ORCID 0000-0001-8824-4007
0000-0003-3529-2640
0000-0003-1006-7594
0000-0002-1640-2894
0000-0003-0466-1933
PageCount 40
ParticipantIDs ieee_primary_9007406
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE Communications surveys and tutorials
PublicationTitleAbbrev COMST
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0042490
Score 2.6467474
Snippet Recently, with the rapid development of information and communication technologies, the infrastructures, resources, end devices, and applications in...
SourceID ieee
SourceType Publisher
StartPage 1392
SubjectTerms Blockchain
Contracts
Data models
Data privacy
distributed ledger technology (DLT)
Machine learning
machine learning (ML)
wireless communications
wireless networks
Title Blockchain and Machine Learning for Communications and Networking Systems
URI https://ieeexplore.ieee.org/document/9007406
Volume 22
WOSCitedRecordID wos000538038400020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8aAHX1V8k4NH02Z3s5vNUYtFwVbBKr2VZJJVEbbSh7_fJLuVCl68hZAQmJB8M8l83wBcpHlhMhEpqpXhlCvBqWbCUB07NIkMGh4U-F7uxWCQj0bysQGXP1wYa21IPrNt3wx_-WaCC_9U1pEe8Ly-9poQouJqLW9d7sIItiTFMNnpPvSfhi78i1nbc0elrxC0Uj4loEdv-3_r7sBW7SWSq2pbd6Fhyz3YXNEObMHdtYOhD3xzkT1RpSH9kBVpSS2Y-kqcN0p-0T9mYdygyvv2I2q18n147t0Mu7e0rotAMZbpnKZKJ6h0hIxpbWykMcsT7cCORyhUaow_lv67TmCUF3mRKFMUUmo3OWVcZckBNMtJaQ-BWCGdR4g24V7JLEaFWqjYOlhTOpexOIKWN8f4s5K-GNeWOP67-wQ2vMWrF4pTaM6nC3sG6_g1f59Nz8N-fQOK4ZgC
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5KFdSDryq-zcGjaXez2c3mqMXSYrsKVumt5LUqwlb68PebZLdSwYu3EBICE5JvJpnvG4CrOM11wkKBpdAUU8EolgHTWBKLJqFWmnoFvpc-y7J0NOKPNbj-4cIYY3zymWm6pv_L1xO1cE9lLe4Az-lrr8WUkrBkay3vXWoDiWBJiwl4q_0weBraAJAETcce5a5G0EoBFY8fnZ3_rbwL25WfiG7Kjd2Dmin2YWtFPbABvVsLRB_qzcb2SBQaDXxepEGVZOorsv4o-kUAmflxWZn57UZUeuUH8Ny5G7a7uKqMgBXh8RzHQkZKyFAFgZTahFIlaSQt3NFQMRFr7Q6m-7BjKkzzNI-EznPOpZ0cB1Qk0SHUi0lhjgAZxq1PqExEnZYZUUJJJoixwCZkygk7hoYzx_izFL8YV5Y4-bv7Eja6w0F_3O9l96ew6axfvlecQX0-XZhzWFdf8_fZ9MLv3TejM5tJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blockchain+and+Machine+Learning+for+Communications+and+Networking+Systems&rft.jtitle=IEEE+Communications+surveys+and+tutorials&rft.au=Liu%2C+Yiming&rft.au=Yu%2C+F.+Richard&rft.au=Li%2C+Xi&rft.au=Ji%2C+Hong&rft.date=2020-01-01&rft.pub=IEEE&rft.eissn=2373-745X&rft.volume=22&rft.issue=2&rft.spage=1392&rft.epage=1431&rft_id=info:doi/10.1109%2FCOMST.2020.2975911&rft.externalDocID=9007406