A Hybrid Short-Term Load Forecasting Approach for Individual Residential Customer
This article proposes a hybrid method (HM) to improve the accuracy of short-term individual residential load forecasting. The HM includes an ensemble model (EM), deep ensemble model (DEM), and thermal dynamic model expressed by resistance-capacitance (RC). The EM consists of three predictors of supp...
Uloženo v:
| Vydáno v: | IEEE transactions on power delivery Ročník 38; číslo 1; s. 26 - 37 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0885-8977, 1937-4208 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This article proposes a hybrid method (HM) to improve the accuracy of short-term individual residential load forecasting. The HM includes an ensemble model (EM), deep ensemble model (DEM), and thermal dynamic model expressed by resistance-capacitance (RC). The EM consists of three predictors of support vector machine (SVM), back propagation neural network (BPNN), and generalized regression neural network (GRNN). The genetic algorithm (GA) is used to optimize SVM and BPNN to enhance their performance. The DEM includes multiple bi-directional long-short term memory (Bi-LSTM) networks. The Bayesian algorithm (BA) is used to optimize the hyperparameters of the Bi-LSTM. The outputs of individual predictors are aggregated using an optimal trimmed algorithm. At first, the total load is separated into the heater and air conditioning (HAC), and non-HAC loads. Then, the RC model is presented to predict the indoor temperature, which integrates outdoor weather and less HAC historical data as the input of the EM to forecast the HAC load. After that, non-HAC loads are further divided into electric lighting and other loads. A daylight equation is used to calculate the illuminance, which is combined with less lighting historical data as the input of DEM to predict electric lights usage. Then, other loads are captured by DEM through less historical data. Finally, the total load is obtained by combining the predicted HAC and non-HAC loads. The datasets from the UMass Smart Microgrid and Flexhouse projects are used to test the proposed method. The comparison with existing models proves that the presented model can provide accurate short-term individual load forecasting. |
|---|---|
| AbstractList | This article proposes a hybrid method (HM) to improve the accuracy of short-term individual residential load forecasting. The HM includes an ensemble model (EM), deep ensemble model (DEM), and thermal dynamic model expressed by resistance-capacitance (RC). The EM consists of three predictors of support vector machine (SVM), back propagation neural network (BPNN), and generalized regression neural network (GRNN). The genetic algorithm (GA) is used to optimize SVM and BPNN to enhance their performance. The DEM includes multiple bi-directional long-short term memory (Bi-LSTM) networks. The Bayesian algorithm (BA) is used to optimize the hyperparameters of the Bi-LSTM. The outputs of individual predictors are aggregated using an optimal trimmed algorithm. At first, the total load is separated into the heater and air conditioning (HAC), and non-HAC loads. Then, the RC model is presented to predict the indoor temperature, which integrates outdoor weather and less HAC historical data as the input of the EM to forecast the HAC load. After that, non-HAC loads are further divided into electric lighting and other loads. A daylight equation is used to calculate the illuminance, which is combined with less lighting historical data as the input of DEM to predict electric lights usage. Then, other loads are captured by DEM through less historical data. Finally, the total load is obtained by combining the predicted HAC and non-HAC loads. The datasets from the UMass Smart Microgrid and Flexhouse projects are used to test the proposed method. The comparison with existing models proves that the presented model can provide accurate short-term individual load forecasting. |
| Author | Lin, Xin Zamora, Ramon Srivastava, Anurag K. Baguley, Craig A. |
| Author_xml | – sequence: 1 givenname: Xin orcidid: 0000-0003-3971-9015 surname: Lin fullname: Lin, Xin email: xin.lin@aut.ac.nz organization: Electrical and Electronic Engineering Department, Auckland University of Technology, Auckland, New Zealand – sequence: 2 givenname: Ramon orcidid: 0000-0002-1269-8368 surname: Zamora fullname: Zamora, Ramon email: ramon.zamora@aut.ac.nz organization: Electrical and Electronic Engineering Department, Auckland University of Technology, Auckland, New Zealand – sequence: 3 givenname: Craig A. orcidid: 0000-0003-1673-5792 surname: Baguley fullname: Baguley, Craig A. email: craig.baguley@aut.ac.nz organization: Electrical and Electronic Engineering Department, Auckland University of Technology, Auckland, New Zealand – sequence: 4 givenname: Anurag K. orcidid: 0000-0003-3518-8018 surname: Srivastava fullname: Srivastava, Anurag K. email: anurag.srivastava@mail.wvu.edu organization: Computer Science and Electrical Engineering Department, West Virginia University, Morgantown, WV, USA |
| BookMark | eNp9kE1PAjEQhhuDiYD-Ab008bw47X60PRIUISFREeNx0227UgJbbIsJ_95FiAcPnmYO7zPv5OmhTuMag9A1gQEhIO4Wz-_z-wEFSgcpYZxTeoa6RKQsySjwDuoC53nCBWMXqBfCCgAyENBFL0M82Vfeavy6dD4mC-M3eOakxmPnjZIh2uYDD7db76Ra4tp5PG20_bJ6J9d4boLVpom23Ue7EN3G-Et0Xst1MFen2Udv44fFaJLMnh6no-EsUVTkMckF50WeMlGxShe5qrNKVKrgKpOccCFpTYipSZbmSishU-BAayg4VEYVGlTaR7fHu-1rnzsTYrlyO9-0lSVlhUiFKFjepugxpbwLwZu63Hq7kX5fEigP6sofdeVBXXlS10L8D6RslNG6Jnpp1_-jN0fUGmN-uwTjmYAi_Qb75X43 |
| CODEN | ITPDE5 |
| CitedBy_id | crossref_primary_10_1016_j_egyr_2024_06_010 crossref_primary_10_1109_TPWRS_2024_3431880 crossref_primary_10_3390_su16166903 crossref_primary_10_1016_j_measurement_2024_114223 crossref_primary_10_1186_s40807_025_00192_w crossref_primary_10_1109_ACCESS_2023_3276646 crossref_primary_10_1109_TPWRD_2025_3576589 crossref_primary_10_1109_TPWRD_2025_3545638 crossref_primary_10_1016_j_apenergy_2025_125977 crossref_primary_10_1016_j_engappai_2025_110980 crossref_primary_10_1088_1742_6596_2781_1_012025 crossref_primary_10_1177_14727978251364418 crossref_primary_10_1109_TPWRD_2024_3486010 crossref_primary_10_1109_ACCESS_2023_3323403 crossref_primary_10_3390_pr11102981 crossref_primary_10_1088_1742_6596_3043_1_012149 crossref_primary_10_1016_j_ymssp_2023_111058 crossref_primary_10_1049_gtd2_13140 crossref_primary_10_1016_j_energy_2025_135854 crossref_primary_10_1109_TPWRD_2024_3496998 crossref_primary_10_1109_TTE_2024_3422993 crossref_primary_10_1016_j_est_2025_116874 crossref_primary_10_1016_j_rineng_2025_105800 crossref_primary_10_1016_j_ijepes_2025_111065 crossref_primary_10_1109_TNSM_2024_3470853 crossref_primary_10_3390_electronics12163441 crossref_primary_10_1016_j_jobe_2024_108917 crossref_primary_10_1007_s40866_023_00188_9 |
| Cites_doi | 10.1109/TSG.2018.2818167 10.1016/j.apenergy.2017.12.051 10.1109/TPWRS.2018.2872388 10.1109/TIE.2019.2939988 10.1109/TIE.2015.2424399 10.1016/j.applthermaleng.2019.04.040 10.1109/TSTE.2018.2883393 10.1016/j.solener.2020.03.104 10.1109/JSYST.2018.2890524 10.1109/PESGM.2014.6939378 10.1109/TPWRS.2020.3042389 10.1109/ACCESS.2020.2982366 10.1109/TII.2017.2789289 10.1109/TITS.2018.2867042 10.1002/0470024275.app7 10.1109/TSG.2017.2753802 10.35833/MPCE.2020.000004 10.1007/s42835-019-00289-5 10.1109/ISGT-Asia.2016.7796484 10.1016/j.energy.2019.116552 10.1109/ACCESS.2020.3027061 10.1016/j.rser.2013.03.004 10.1016/j.energy.2020.118265 10.1109/TSG.2017.2686012 10.1016/j.ijepes.2013.10.020 10.1016/j.enbuild.2018.06.050 10.1109/ACCESS.2020.3028281 10.1109/TII.2020.3000184 10.1109/TSTE.2019.2931154 10.1016/j.enbuild.2018.01.039 10.1109/ACCESS.2021.3053069 10.1061/(ASCE)AE.1943-5568.0000183 10.1016/j.ijepes.2014.08.025 10.1109/TPWRD.2014.2386696 10.1016/j.rser.2021.110788 10.1016/j.enbuild.2016.02.030 10.1016/j.solener.2007.04.008 10.1016/j.scs.2019.101533 10.1109/ACCESS.2020.2994119 10.1016/j.enbuild.2015.09.033 10.1109/TIE.2020.3009604 10.1109/TSG.2017.2743015 10.1109/TII.2018.2871159 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| DOI | 10.1109/TPWRD.2022.3178822 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1937-4208 |
| EndPage | 37 |
| ExternalDocumentID | 10_1109_TPWRD_2022_3178822 9784906 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c295t-598865379b7bd65cf4b9bc68c4a8189a2f11ef1435cdc9a30802f0680bec6d0c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000966947400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-8977 |
| IngestDate | Mon Jun 30 02:41:56 EDT 2025 Tue Nov 18 22:07:02 EST 2025 Sat Nov 29 01:38:14 EST 2025 Wed Aug 27 02:18:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-598865379b7bd65cf4b9bc68c4a8189a2f11ef1435cdc9a30802f0680bec6d0c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1673-5792 0000-0003-3518-8018 0000-0003-3971-9015 0000-0002-1269-8368 |
| PQID | 2769399675 |
| PQPubID | 85445 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_9784906 proquest_journals_2769399675 crossref_primary_10_1109_TPWRD_2022_3178822 crossref_citationtrail_10_1109_TPWRD_2022_3178822 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on power delivery |
| PublicationTitleAbbrev | TPWRD |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 (ref33) 2022 ref37 ref14 ref36 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 (ref47) 2021 ref24 ref23 ref45 ref26 ref48 ref25 ref20 ref42 ref41 ref22 ref21 ref43 Thavlov (ref34) 2008 ref28 ref27 ref29 ref8 Brochu (ref44) 2010 ref7 ref9 ref4 ref3 ref6 ref5 (ref46) 2021 ref40 |
| References_xml | – ident: ref15 doi: 10.1109/TSG.2018.2818167 – ident: ref11 doi: 10.1016/j.apenergy.2017.12.051 – ident: ref12 doi: 10.1109/TPWRS.2018.2872388 – ident: ref20 doi: 10.1109/TIE.2019.2939988 – ident: ref16 doi: 10.1109/TIE.2015.2424399 – year: 2008 ident: ref34 article-title: Dynamic optimization of power consumption – ident: ref19 doi: 10.1016/j.applthermaleng.2019.04.040 – ident: ref22 doi: 10.1109/TSTE.2018.2883393 – ident: ref36 doi: 10.1016/j.solener.2020.03.104 – ident: ref28 doi: 10.1109/JSYST.2018.2890524 – ident: ref9 doi: 10.1109/PESGM.2014.6939378 – ident: ref23 doi: 10.1109/TPWRS.2020.3042389 – year: 2021 ident: ref47 article-title: Data and experiments for building energy performance – ident: ref39 doi: 10.1109/ACCESS.2020.2982366 – ident: ref40 doi: 10.1109/TII.2017.2789289 – ident: ref42 doi: 10.1109/TITS.2018.2867042 – ident: ref38 doi: 10.1002/0470024275.app7 – ident: ref3 doi: 10.1109/TSG.2017.2753802 – ident: ref41 doi: 10.35833/MPCE.2020.000004 – ident: ref17 doi: 10.1007/s42835-019-00289-5 – ident: ref8 doi: 10.1109/ISGT-Asia.2016.7796484 – ident: ref5 doi: 10.1016/j.energy.2019.116552 – ident: ref26 doi: 10.1109/ACCESS.2020.3027061 – ident: ref27 doi: 10.1016/j.rser.2013.03.004 – ident: ref6 doi: 10.1016/j.energy.2020.118265 – ident: ref7 doi: 10.1109/TSG.2017.2686012 – ident: ref18 doi: 10.1016/j.ijepes.2013.10.020 – year: 2010 ident: ref44 article-title: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning – ident: ref14 doi: 10.1016/j.enbuild.2018.06.050 – ident: ref10 doi: 10.1109/ACCESS.2020.3028281 – ident: ref1 doi: 10.1109/TII.2020.3000184 – ident: ref21 doi: 10.1109/TSTE.2019.2931154 – ident: ref30 doi: 10.1016/j.enbuild.2018.01.039 – ident: ref2 doi: 10.1109/ACCESS.2021.3053069 – ident: ref32 doi: 10.1061/(ASCE)AE.1943-5568.0000183 – ident: ref45 doi: 10.1016/j.ijepes.2014.08.025 – ident: ref13 doi: 10.1109/TPWRD.2014.2386696 – ident: ref24 doi: 10.1016/j.rser.2021.110788 – ident: ref35 doi: 10.1016/j.enbuild.2016.02.030 – ident: ref37 doi: 10.1016/j.solener.2007.04.008 – ident: ref29 doi: 10.1016/j.scs.2019.101533 – ident: ref25 doi: 10.1109/ACCESS.2020.2994119 – ident: ref31 doi: 10.1016/j.enbuild.2015.09.033 – year: 2021 ident: ref46 article-title: Umass smart dataset – ident: ref43 doi: 10.1109/TIE.2020.3009604 – ident: ref4 doi: 10.1109/TSG.2017.2743015 – year: 2022 ident: ref33 article-title: Energy use in homes – ident: ref48 doi: 10.1109/TII.2018.2871159 |
| SSID | ssj0004090 |
| Score | 2.5457878 |
| Snippet | This article proposes a hybrid method (HM) to improve the accuracy of short-term individual residential load forecasting. The HM includes an ensemble model... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 26 |
| SubjectTerms | Air conditioning Algorithms Artificial neural networks Atmospheric modeling Back propagation networks Bayesian algorithm Bi-LSTM BPNN Data models Distributed generation Dynamic models Electrical loads Forecasting genetic algorithm Genetic algorithms GRNN hybrid method Illuminance Lighting Load Load modeling Neural networks Optimization Predictive models short-term residential load forecasting Support vector machines SVM thermal dynamic model trimmed algorithm |
| Title | A Hybrid Short-Term Load Forecasting Approach for Individual Residential Customer |
| URI | https://ieeexplore.ieee.org/document/9784906 https://www.proquest.com/docview/2769399675 |
| Volume | 38 |
| WOSCitedRecordID | wos000966947400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1937-4208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004090 issn: 0885-8977 databaseCode: RIE dateStart: 19860101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zeNCDv6Y4nZKDN422XdIkxzEdE8aYc-JuJU1SFGYn-yH435vXdlVRBG89JFDymve-l-b7PoTOLHM1IUwYYcJTxOF_SgRlhnDwKA9srLSfEYV7vN8X47EcVNBFyYWx1maXz-wlPGb_8s1UL-GoDNRgqQR97TXOw5yr9cmB9PLzFCEYEQ7UrAgynrwaDR6H164VDALXobqWLwi-FaHMVeVHKs7qS2f7f2-2g7YKHIlbeeB3UcWme2jzi7pgDd21cPcdCFn4_smBbDJySRj3pspg8OPUag43nnGrEBXHDr3i25KehYcWjDxTlwAmuL10EPHFzvbRQ-dm1O6SwkGB6ECyBWFSiJA1uYx5bEKmExrLWIdCU-UKtVRB4vs2AcikjZaqCcTbBNw4XGRD4-nmAaqm09QeIuzHnMoEFKeURw3TwiFD6hnLaaI8bUwd-asljXQhLw4uF5MoazM8GWVhiCAMURGGOjov57zm4hp_jq7BwpcjizWvo8YqclGx_-ZRABaPrpXj7Oj3WcdoA4zj8_vXDVRdzJb2BK3rt8XzfHaafVofI3jKnA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB1VgAR74GMLosvH-sANDI5rJ_axKqAiuhWwXS23yLEdgVTaVT9W4t_jSdIuKxAStxxsKfLEM28cv_cAjrwMNSHOJZWKGRrwv6BKSEcT9CjnPjM2KojC3aTXU_f3-qYGJwsujPe-uHzmT_Gx-JfvRnaGR2WoBis06msvSyE4K9la_1iQrDxRUUpSFWDNnCLD9Fn_5vfdeWgGOQ89amj6OP-vDBW-Km-ScVFhLjc-926bsF4hSdIqQ78FNT_8Cl9e6QvW4bZFOs9IySI_HwLMpv2Qhkl3ZBxBR05rJnjnmbQqWXES8Cu5WhC0yJ1HK89hSAED0p4FkPjkx9vw6_Ki3-7QykOBWq7llEqtVCybic6SzMXS5iLTmY2VFSaUam14HkU-R9BkndWmidTbHP04Qmxjx2xzB5aGo6HfBRJlidA5ak4ZJpy0KmBDwZxPRG6Yda4B0XxJU1sJjKPPxSAtGg2m0yIMKYYhrcLQgOPFnD-lvMaHo-u48IuR1Zo3YH8eubTagZOUo8ljaOYS-e39Wd9htdP_0U27V73rPVhDG_nyNvY-LE3HM38AK_bv9HEyPiw-sxfX283j |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Short-Term+Load+Forecasting+Approach+for+Individual+Residential+Customer&rft.jtitle=IEEE+transactions+on+power+delivery&rft.au=Lin%2C+Xin&rft.au=Zamora%2C+Ramon&rft.au=Baguley%2C+Craig+A&rft.au=Srivastava%2C+Anurag+K&rft.date=2023-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0885-8977&rft.eissn=1937-4208&rft.volume=38&rft.issue=1&rft.spage=26&rft_id=info:doi/10.1109%2FTPWRD.2022.3178822&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8977&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8977&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8977&client=summon |