Reinforcement Neural Fuzzy Surrogate-Assisted Multiobjective Evolutionary Fuzzy Systems With Robot Learning Control Application

This paper proposes a new reinforcement neural fuzzy surrogate (RNFS)-assisted multiobjective evolutionary optimization (RNFS-MEO) algorithm to boost the learning efficiency of data-driven fuzzy controllers (FCs). The RNFS-MEO is applied to evolve a population of FCs in a multiobjective robot wall-f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on fuzzy systems Ročník 28; číslo 3; s. 434 - 446
Hlavní autoři: Juang, Chia-Feng, Bui, Trong Bac
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1063-6706, 1941-0034
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper proposes a new reinforcement neural fuzzy surrogate (RNFS)-assisted multiobjective evolutionary optimization (RNFS-MEO) algorithm to boost the learning efficiency of data-driven fuzzy controllers (FCs). The RNFS-MEO is applied to evolve a population of FCs in a multiobjective robot wall-following control problem in order to reduce the number of time-consuming control trials and the implementation time of learning. In the RNFS-MEO, the RNFS is incorporated into a typical multiobjective continuous ant colony optimization algorithm to improve its learning efficiency. The RNFS estimates the accumulated multiobjective function values of the FCs in a colony without applying them to control a process, which helps reduce the number of control trials. The RNFS is trained online through structure and parameter learning based on the reinforcement signals from controlling a process. Considering the influence of the current control signals on the future states of a controlled process, the temporal difference technique is used in the RNFS training so that it estimates not only the current but also the future objective function values. The colony of FCs in the RNFS-MEO is repeatedly evolved based on the RNFS estimated values or the objective function values from real evaluations until a colony of successful FCs is found. The RNFS-MEO-based FC learning approach is applied to a robot wall-following control problem. Simulations and experiments on the robot control application are performed to verify the effectiveness and efficiency of the RNFS-MEO.
AbstractList This paper proposes a new reinforcement neural fuzzy surrogate (RNFS)-assisted multiobjective evolutionary optimization (RNFS-MEO) algorithm to boost the learning efficiency of data-driven fuzzy controllers (FCs). The RNFS-MEO is applied to evolve a population of FCs in a multiobjective robot wall-following control problem in order to reduce the number of time-consuming control trials and the implementation time of learning. In the RNFS-MEO, the RNFS is incorporated into a typical multiobjective continuous ant colony optimization algorithm to improve its learning efficiency. The RNFS estimates the accumulated multiobjective function values of the FCs in a colony without applying them to control a process, which helps reduce the number of control trials. The RNFS is trained online through structure and parameter learning based on the reinforcement signals from controlling a process. Considering the influence of the current control signals on the future states of a controlled process, the temporal difference technique is used in the RNFS training so that it estimates not only the current but also the future objective function values. The colony of FCs in the RNFS-MEO is repeatedly evolved based on the RNFS estimated values or the objective function values from real evaluations until a colony of successful FCs is found. The RNFS-MEO-based FC learning approach is applied to a robot wall-following control problem. Simulations and experiments on the robot control application are performed to verify the effectiveness and efficiency of the RNFS-MEO.
Author Juang, Chia-Feng
Bui, Trong Bac
Author_xml – sequence: 1
  givenname: Chia-Feng
  orcidid: 0000-0002-3713-4315
  surname: Juang
  fullname: Juang, Chia-Feng
  email: cfjuang@dragon.nchu.edu.tw
  organization: Department of Electrical Engineering, National Chung-Hsing University, Taichung, Taiwan, R.O.C
– sequence: 2
  givenname: Trong Bac
  surname: Bui
  fullname: Bui, Trong Bac
  email: buitrongbac@gmail.com
  organization: Department of Electrical Engineering, National Chung-Hsing University, Taichung, Taiwan, R.O.C
BookMark eNp9kE1LAzEQhoMo-PkH9BLwvDUfm-3mWIpVoSr4geBlyWZnNWWb1CRbqBf_uqlVDx48Zci8z8zw7KNt6ywgdEzJgFIizx4mj8_PA0aoHDBJhoLyLbRHZU4zQni-nWpS8KwYkmIX7YcwI4TmgpZ76OMOjG2d1zAHG_EN9F51eNK_v6_wfe-9e1ERslEIJkRo8HXfRePqGeholoDPl67r04dVfvUDrVJwHvCTia_4ztUu4ikob419wWNno3cdHi0WndFqDR6inVZ1AY6-3wP0ODl_GF9m09uLq_FommkmRcxEyVUhWgqFrJumrWtecsE1EQUHXWhRl21bM8p4S4VkTV6XVNJGaiYEV6nND9DpZu7Cu7ceQqxmrvc2rawYHzLOmSB5SpWblPYuBA9tpU38ujN6ZbqKkmqtu_rSXa11V9-6E8r-oAtv5snL_9DJBjIA8AuUxZCnAP8EkVSRWw
CODEN IEFSEV
CitedBy_id crossref_primary_10_1016_j_knosys_2022_109448
crossref_primary_10_1109_TEVC_2021_3118593
crossref_primary_10_1007_s10462_025_11129_6
crossref_primary_10_1016_j_ins_2022_05_055
crossref_primary_10_1016_j_ins_2024_120719
crossref_primary_10_1007_s40815_023_01623_w
crossref_primary_10_1109_TCYB_2024_3404624
crossref_primary_10_1109_TCYB_2020_3015960
crossref_primary_10_1109_TIE_2020_3048279
crossref_primary_10_1016_j_isatra_2022_06_012
crossref_primary_10_1155_2022_3498258
crossref_primary_10_1109_JBHI_2021_3120662
crossref_primary_10_1016_j_engappai_2023_106694
crossref_primary_10_1109_TEVC_2024_3361000
crossref_primary_10_1109_ACCESS_2020_3033593
crossref_primary_10_1109_TIE_2022_3183358
crossref_primary_10_3390_math12070992
crossref_primary_10_1109_TCYB_2020_3041269
crossref_primary_10_1007_s40815_022_01387_9
crossref_primary_10_1016_j_isatra_2025_01_003
crossref_primary_10_1007_s40430_020_02767_8
crossref_primary_10_1109_TIE_2023_3281701
crossref_primary_10_1016_j_ins_2022_04_053
crossref_primary_10_1109_TITS_2020_3025671
crossref_primary_10_1109_TCDS_2021_3098229
crossref_primary_10_1109_TFUZZ_2022_3198855
crossref_primary_10_1016_j_swevo_2024_101548
crossref_primary_10_1109_TCSI_2023_3325218
crossref_primary_10_1049_elp2_12097
crossref_primary_10_1109_TFUZZ_2023_3273308
crossref_primary_10_1109_TFUZZ_2021_3075842
crossref_primary_10_1016_j_swevo_2024_101486
crossref_primary_10_1109_TFUZZ_2023_3341930
crossref_primary_10_1016_j_swevo_2024_101763
Cites_doi 10.1109/TFUZZ.2012.2201338
10.1109/TCDS.2017.2681181
10.1109/TCYB.2018.2870981
10.1109/TFUZZ.2006.883415
10.1016/S0165-0114(96)00098-X
10.1007/s40815-018-0453-z
10.1016/j.engstruct.2007.04.008
10.1109/TFUZZ.2009.2038150
10.1109/TFUZZ.2006.889954
10.1093/bioinformatics/10.6.635
10.1016/j.swevo.2011.05.001
10.1177/1077546316653040
10.1109/TIE.2015.2405901
10.1109/TCYB.2017.2718037
10.1109/TMAG.2014.2336835
10.1109/TCYB.2014.2359966
10.1109/ISDA.2011.6121650
10.1016/j.asoc.2016.12.015
10.2166/wst.2010.778
10.3233/IFS-2012-0621
10.1109/3477.836377
10.1109/TFUZZ.2013.2272480
10.1109/ICIEV.2016.7760046
10.1109/TSMCC.2004.841910
10.1016/j.knosys.2015.01.013
10.1109/INTMAG.2015.7156704
10.1109/FUZZ-IEEE.2016.7737887
10.1109/TFUZZ.2011.2104364
10.1109/4235.996017
10.1109/CEC.2012.6256108
10.1109/TFUZZ.2013.2278972
10.1109/TFUZZ.2011.2140326
10.1109/TIE.2007.896439
10.1109/TFUZZ.2011.2131657
10.1109/CEC.2015.7256922
10.1109/TCYB.2015.2486779
10.1016/j.ins.2014.11.050
10.1109/TFUZZ.2006.876329
10.1109/TAP.2017.2766660
10.1016/j.paerosci.2005.02.001
10.1142/AFSAT
10.1109/MCI.2013.2264233
10.1049/iet-map.2017.0635
10.1109/TEVC.2002.800884
10.1109/TFUZZ.2009.2038712
10.1109/TSMC.2015.2437847
10.1007/BF00114723
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2019.2907513
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 446
ExternalDocumentID 10_1109_TFUZZ_2019_2907513
8673907
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: 106-2221-E-005-004-MY2
  funderid: 10.13039/501100004663
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-583a65f1e69bddfbb38353c0563ec6c5b8ffb2123f1592d4b8191d9c2553ac5b3
IEDL.DBID RIE
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000521990800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Sun Oct 05 00:24:53 EDT 2025
Sat Nov 29 03:12:38 EST 2025
Tue Nov 18 22:32:49 EST 2025
Wed Aug 27 02:35:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-583a65f1e69bddfbb38353c0563ec6c5b8ffb2123f1592d4b8191d9c2553ac5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3713-4315
PQID 2372332504
PQPubID 85428
PageCount 13
ParticipantIDs ieee_primary_8673907
proquest_journals_2372332504
crossref_citationtrail_10_1109_TFUZZ_2019_2907513
crossref_primary_10_1109_TFUZZ_2019_2907513
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
vrkalovic (ref15) 2018; 16
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref49
ref8
sutton (ref48) 2018
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
lópez (ref2) 2015; 80
ref36
ref31
ref30
tettamanzi (ref1) 2001
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref20
  doi: 10.1109/TFUZZ.2012.2201338
– ident: ref32
  doi: 10.1109/TCDS.2017.2681181
– volume: 16
  start-page: 208
  year: 2018
  ident: ref15
  article-title: Model-free sliding mode and fuzzy controllers for reverse osmosis desalination plants
  publication-title: Artific Intellig Int J
– ident: ref33
  doi: 10.1109/TCYB.2018.2870981
– ident: ref34
  doi: 10.1109/TFUZZ.2006.883415
– ident: ref21
  doi: 10.1016/S0165-0114(96)00098-X
– ident: ref9
  doi: 10.1007/s40815-018-0453-z
– ident: ref25
  doi: 10.1016/j.engstruct.2007.04.008
– ident: ref10
  doi: 10.1109/TFUZZ.2009.2038150
– ident: ref26
  doi: 10.1109/TFUZZ.2006.889954
– ident: ref42
  doi: 10.1093/bioinformatics/10.6.635
– year: 2018
  ident: ref48
  publication-title: Reinforcement Learning An Introduction
– ident: ref39
  doi: 10.1016/j.swevo.2011.05.001
– ident: ref37
  doi: 10.1177/1077546316653040
– ident: ref16
  doi: 10.1109/TIE.2015.2405901
– ident: ref17
  doi: 10.1109/TCYB.2017.2718037
– ident: ref45
  doi: 10.1109/TMAG.2014.2336835
– ident: ref8
  doi: 10.1109/TCYB.2014.2359966
– ident: ref28
  doi: 10.1109/ISDA.2011.6121650
– ident: ref14
  doi: 10.1016/j.asoc.2016.12.015
– ident: ref27
  doi: 10.2166/wst.2010.778
– ident: ref35
  doi: 10.3233/IFS-2012-0621
– year: 2001
  ident: ref1
  publication-title: Soft Computing Integrating Evolutionary Neural and Fuzzy Systems
– ident: ref3
  doi: 10.1109/3477.836377
– ident: ref11
  doi: 10.1109/TFUZZ.2013.2272480
– ident: ref30
  doi: 10.1109/ICIEV.2016.7760046
– ident: ref22
  doi: 10.1109/TSMCC.2004.841910
– volume: 80
  start-page: 109
  year: 2015
  ident: ref2
  article-title: Revisiting evolutionary fuzzy systems: Taxonomy, applications, new trends and challenges
  publication-title: Knowl -Based Syst
  doi: 10.1016/j.knosys.2015.01.013
– ident: ref46
  doi: 10.1109/INTMAG.2015.7156704
– ident: ref13
  doi: 10.1109/FUZZ-IEEE.2016.7737887
– ident: ref6
  doi: 10.1109/TFUZZ.2011.2104364
– ident: ref38
  doi: 10.1109/4235.996017
– ident: ref44
  doi: 10.1109/CEC.2012.6256108
– ident: ref7
  doi: 10.1109/TFUZZ.2013.2278972
– ident: ref49
  doi: 10.1109/TFUZZ.2011.2140326
– ident: ref36
  doi: 10.1109/TIE.2007.896439
– ident: ref24
  doi: 10.1109/TFUZZ.2011.2131657
– ident: ref43
  doi: 10.1109/CEC.2015.7256922
– ident: ref31
  doi: 10.1109/TCYB.2015.2486779
– ident: ref12
  doi: 10.1016/j.ins.2014.11.050
– ident: ref5
  doi: 10.1109/TFUZZ.2006.876329
– ident: ref19
  doi: 10.1109/TAP.2017.2766660
– ident: ref41
  doi: 10.1016/j.paerosci.2005.02.001
– ident: ref4
  doi: 10.1142/AFSAT
– ident: ref29
  doi: 10.1109/MCI.2013.2264233
– ident: ref47
  doi: 10.1049/iet-map.2017.0635
– ident: ref40
  doi: 10.1109/TEVC.2002.800884
– ident: ref23
  doi: 10.1109/TFUZZ.2009.2038712
– ident: ref18
  doi: 10.1109/TSMC.2015.2437847
– ident: ref50
  doi: 10.1007/BF00114723
SSID ssj0014518
Score 2.4791524
Snippet This paper proposes a new reinforcement neural fuzzy surrogate (RNFS)-assisted multiobjective evolutionary optimization (RNFS-MEO) algorithm to boost the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 434
SubjectTerms Ant colony optimization
Artificial neural networks
Computer simulation
Efficiency
Evolutionary algorithms
Evolutionary fuzzy systems (EFS)
Fuzzy control
Fuzzy logic
Fuzzy systems
Machine learning
Mathematical model
multiobjective optimization algorithms
Multiple objective analysis
neural fuzzy systems
Optimization
Process control
Robot control
Robot learning
Robots
Signal processing
surrogate-assisted learning
temporal difference (TD) learning
Training
Title Reinforcement Neural Fuzzy Surrogate-Assisted Multiobjective Evolutionary Fuzzy Systems With Robot Learning Control Application
URI https://ieeexplore.ieee.org/document/8673907
https://www.proquest.com/docview/2372332504
Volume 28
WOSCitedRecordID wos000521990800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4Me_NgU5xc5eNNua9Mm7VFkxYOIzA3HLqVJUz-QVWo32C7-6yZpOhVF8FZoXlr45eP98t77BeDUJantU4dbjiRAlpsKYsWC-xYXDlVxGR9zLeJ6TW9u_PE4uK3B-aoWRgihk89ERz3qWH6S8Zk6Kuv6hEqKTutQp5SUtVqriIHr2WXZG8EWoT1SFcj0gu4wHE0mKosr6DjS3LPxt01I36ryYynW-0u49b8_24ZN40eiixL4HaiJaRO2qjsakJmyTdj4IjjYgveB0EqpXB8KIqXMITsJZ8vlAt3N8jxTh2qWhEyBnyBdnZux53JRRP25GadxvqiMSsFzdP9UPKJBxrICGcXWB3RZZsGji88Y-S6Mwv7w8soyVzBY3Am8QtVkxcRLbUECliQpY5LQephLrwkLTrjH_DRlavdLpVvkJC5T_C8JuCQqOJav8R40ptlU7APycJpwX_bCXN-VvTBJDKUvh92A2vIDXhvsCpOIG31ydU3GS6R5Si-INI6RwjEyOLbhbGXzWqpz_Nm6pZBbtTSgteGogj4yE_gtcjCV_6b03Q5-tzqEdUdRb52OdgSNIp-JY1jj8-LpLT_RY_MDze_j5g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50FdSDb3F95uBN627zansUcVFcF9EVxUvZpKkPZCvdrqAX_7pJmq6KIngrNJkWvjzmy8x8AdihPPXDAEsPawLk0VRxr6dk6EmFAxOXCYm0Iq7toNMJb26i8zHYG9XCKKVs8pnaN482lp9kcmiOyhohDzRFD8ZhglGKm2W11ihmQJlfFr5x4vGgyasSmWbU6Laubm9NHle0j7UB5pNv25C9V-XHYmx3mNbc__5tHmadJ4kOSugXYEz1F2GuuqUBuUm7CDNfJAeX4P1CWa1UaY8FkdHm0EZaw7e3V3Q5zPPMHKt5GjQDf4JsfW4mHstlER29uJHay1-rTqXkObp-KO7RRSayAjnN1jt0WObBo4PPKPkyXLWOuofHnruEwZM4YoWpyupxlvqKRyJJUiE0pWVEar-JKMklE2GaCrP_pdoxwgkVhgEmkdRUhfT0a7ICtX7WV6uAGEkTGWorgoZUWxGaGmpvjtAo8PUHWB38CpNYOoVyc1HGU2yZSjOKLY6xwTF2ONZhd9TnudTn-LP1kkFu1NKBVoeNCvrYTeFBjEmg_80ovK393msbpo67Z-24fdI5XYdpbIi4TU7bgFqRD9UmTMqX4mGQb9lx-gHJ7ect
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+Neural+Fuzzy+Surrogate-Assisted+Multiobjective+Evolutionary+Fuzzy+Systems+With+Robot+Learning+Control+Application&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Juang%2C+Chia-Feng&rft.au=Bui%2C+Trong+Bac&rft.date=2020-03-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=28&rft.issue=3&rft.spage=434&rft.epage=446&rft_id=info:doi/10.1109%2FTFUZZ.2019.2907513&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2019_2907513
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon