A Collaborative Optimization Approach for Configuring Energy Storage Systems and Scheduling Multi-Type Electric Vehicles Using an Improved Multi-Objective Particle Swarm Optimization Algorithm

Energy storage systems (ESS) and electric vehicles (EVs) play a crucial role in facilitating the grid integration of variable wind and solar power. Despite their potential, achieving coordinated operational optimization between ESS and heterogeneous EV fleets to maintain grid stability under high re...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Processes Ročník 13; číslo 5; s. 1343
Hlavní autoři: Liu, Yirun, Wu, Xiaolong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.05.2025
Témata:
ISSN:2227-9717, 2227-9717
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Energy storage systems (ESS) and electric vehicles (EVs) play a crucial role in facilitating the grid integration of variable wind and solar power. Despite their potential, achieving coordinated operational optimization between ESS and heterogeneous EV fleets to maintain grid stability under high renewable penetration poses a complex technical challenge. To address this, this study develops an integrated optimization framework combining ESS capacity planning with multi-type EV scheduling strategies. For ESS deployment, a tri-objective model balances cost, wind–solar integration, and electricity deficit. A Monte Carlo simulation algorithm is used to simulate different probabilistic models of charging loads for multiple types of EVs, and a bi-objective optimization approach is used for their orderly scheduling. An improved multi-objective particle swarm optimization (IMOPSO) algorithm is proposed to resolve the coupled optimization problem. Case studies reveal that the framework achieves annual cost reductions, enhances the wind–solar integration rate, and minimizes the power deficit in the system.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-9717
2227-9717
DOI:10.3390/pr13051343