Hierarchical Clustering to Find Representative Operating Periods for Capacity-Expansion Modeling

Power system capacity-expansion models are typically intractable if every operating period is represented. This issue is normally overcome by using a subset of representative operating periods. For instance, representative operating hours can be selected by discretizing the load-duration curve, whic...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on power systems Ročník 33; číslo 3; s. 3029 - 3039
Hlavní autori: Liu, Yixian, Sioshansi, Ramteen, Conejo, Antonio J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.05.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0885-8950, 1558-0679
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Power system capacity-expansion models are typically intractable if every operating period is represented. This issue is normally overcome by using a subset of representative operating periods. For instance, representative operating hours can be selected by discretizing the load-duration curve, which captures the effect of load levels on system-operation costs. This approach is inappropriate if system-operating costs depend on parameters other than load (e.g., renewable-resource availability) or if there are important intertemporal operating constraints (e.g., generator-ramping limits). This paper proposes the use of representative operating days, which are selected using clustering, to surmount these issues. We propose two hierarchical clustering techniques, which are designed to capture the important statistical features of the parameters (e.g., load and renewable-resource availability), in selecting representative days. This includes temporal autocorrelations and correlations between different locations. A case study, which is based on the Texan power system, is used to demonstrate the techniques. We show that our proposed clustering techniques result in investment decisions that closely match those made using the full unclustered dataset.
AbstractList Power system capacity-expansion models are typically intractable if every operating period is represented. This issue is normally overcome by using a subset of representative operating periods. For instance, representative operating hours can be selected by discretizing the load-duration curve, which captures the effect of load levels on system-operation costs. This approach is inappropriate if system-operating costs depend on parameters other than load (e.g., renewable-resource availability) or if there are important intertemporal operating constraints (e.g., generator-ramping limits). This paper proposes the use of representative operating days, which are selected using clustering, to surmount these issues. We propose two hierarchical clustering techniques, which are designed to capture the important statistical features of the parameters (e.g., load and renewable-resource availability), in selecting representative days. This includes temporal autocorrelations and correlations between different locations. A case study, which is based on the Texan power system, is used to demonstrate the techniques. We show that our proposed clustering techniques result in investment decisions that closely match those made using the full unclustered dataset.
Author Conejo, Antonio J.
Liu, Yixian
Sioshansi, Ramteen
Author_xml – sequence: 1
  givenname: Yixian
  surname: Liu
  fullname: Liu, Yixian
  email: liu.2441@osu.edu
  organization: Department of Integrated Systems Engineering, The Ohio State University, Columbus, OH, USA
– sequence: 2
  givenname: Ramteen
  orcidid: 0000-0002-1440-0158
  surname: Sioshansi
  fullname: Sioshansi, Ramteen
  email: sioshansi.1@osu.edu
  organization: Department of Integrated Systems Engineering, The Ohio State University, Columbus, OH, USA
– sequence: 3
  givenname: Antonio J.
  orcidid: 0000-0002-2324-605X
  surname: Conejo
  fullname: Conejo, Antonio J.
  email: conejonavarro.1@osu.edu
  organization: Department of Integrated Systems Engineering, and the Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA
BookMark eNp9kLtOwzAUhi0EEi3wArBEYk7xJRd7RBUFpKKiAmIMbnwMRsEOtovg7XFoxcDAdIbzfefyj9GudRYQOiZ4QggWZ_e3j8u7CcWkntC6qFgtdtCIlCXPcVWLXTTCnJc5FyXeR-MQXjHGVWqM0NOVAS99-2Ja2WXTbh0ieGOfs-iymbEqW0LvIYCNMpoPyBZ9wuMA3CbOqZBp57Op7GVr4ld-8dlLG4yz2Y1T0CXuEO1p2QU42tYD9DC7uJ9e5fPF5fX0fJ63VJQxLxkhtZBaElKosmZa8UpQXTFgtCByVfGCEaC6VVi1wCnRoJUqCFvRirVYsAN0upnbe_e-hhCbV7f2Nq1sKKaCFAyLgeIbqvUuBA-6SWenf5yNXpquIbgZ8mx-8myGPJttnkmlf9Temzfpv_6XTjaSAYBfgSekFJx9A4hrhNQ
CODEN ITPSEG
CitedBy_id crossref_primary_10_1016_j_enpol_2022_112844
crossref_primary_10_1016_j_ress_2024_110086
crossref_primary_10_1109_ACCESS_2023_3327640
crossref_primary_10_1016_j_apenergy_2021_117825
crossref_primary_10_1016_j_apenergy_2019_113603
crossref_primary_10_1049_rpg2_13018
crossref_primary_10_1109_TPWRS_2024_3523220
crossref_primary_10_3390_electronics12102326
crossref_primary_10_1109_ACCESS_2024_3472843
crossref_primary_10_1109_ACCESS_2020_3027435
crossref_primary_10_1016_j_ejor_2019_07_054
crossref_primary_10_1007_s40518_023_00229_y
crossref_primary_10_1109_TPWRS_2019_2892619
crossref_primary_10_1109_TPWRS_2023_3257368
crossref_primary_10_1109_TPWRS_2019_2929276
crossref_primary_10_3390_su12093543
crossref_primary_10_1016_j_ijepes_2022_108767
crossref_primary_10_1016_j_ijepes_2025_110929
crossref_primary_10_1016_j_enpol_2023_113503
crossref_primary_10_1016_j_renene_2022_09_040
crossref_primary_10_1016_j_ijepes_2021_107697
crossref_primary_10_1007_s40518_020_00169_x
crossref_primary_10_1016_j_solmat_2023_112559
crossref_primary_10_1109_TPWRS_2023_3240830
crossref_primary_10_1109_TSTE_2018_2881531
crossref_primary_10_1016_j_rser_2021_111984
crossref_primary_10_1109_TII_2020_3024922
crossref_primary_10_1109_TSTE_2023_3246592
crossref_primary_10_1109_JESTIE_2022_3198504
crossref_primary_10_1109_TPWRS_2023_3284854
crossref_primary_10_1109_TPWRS_2023_3327969
crossref_primary_10_1109_TSG_2022_3224900
crossref_primary_10_3390_su12031083
crossref_primary_10_1016_j_energy_2025_138272
crossref_primary_10_1109_JPROC_2020_3005284
crossref_primary_10_1016_j_apenergy_2020_115224
crossref_primary_10_1016_j_apenergy_2022_119029
crossref_primary_10_1016_j_eneco_2019_07_017
crossref_primary_10_1016_j_est_2025_117950
crossref_primary_10_3390_buildings15040648
crossref_primary_10_1109_TPWRS_2022_3146299
crossref_primary_10_1109_TPWRS_2019_2958850
crossref_primary_10_1016_j_epsr_2024_110267
crossref_primary_10_1016_j_ref_2025_100738
crossref_primary_10_1049_iet_rpg_2018_6264
crossref_primary_10_1016_j_apenergy_2020_114938
crossref_primary_10_1016_j_apenergy_2021_116719
crossref_primary_10_3390_en14227599
crossref_primary_10_1016_j_epsr_2021_107729
crossref_primary_10_1016_j_energy_2022_124467
crossref_primary_10_1109_TPWRS_2023_3236842
crossref_primary_10_1016_j_apenergy_2024_122965
crossref_primary_10_1007_s11750_019_00519_z
crossref_primary_10_1002_ente_202401275
crossref_primary_10_1109_ACCESS_2019_2943498
crossref_primary_10_1007_s10287_023_00451_5
crossref_primary_10_1109_TSTE_2021_3077017
crossref_primary_10_1016_j_energy_2021_119989
crossref_primary_10_1007_s12667_018_00321_z
crossref_primary_10_1016_j_compchemeng_2020_106785
crossref_primary_10_1109_TSTE_2024_3411577
crossref_primary_10_1049_enc2_12114
crossref_primary_10_3390_en13030641
crossref_primary_10_1109_TPWRS_2022_3141993
crossref_primary_10_1016_j_energy_2021_120491
crossref_primary_10_1016_j_segan_2025_101622
crossref_primary_10_1049_iet_gtd_2018_5863
crossref_primary_10_1016_j_rser_2022_112955
crossref_primary_10_1016_j_compchemeng_2022_108124
crossref_primary_10_1016_j_eneco_2024_107675
crossref_primary_10_1109_TPWRS_2022_3151062
crossref_primary_10_1016_j_asoc_2024_112107
crossref_primary_10_1016_j_apenergy_2022_119356
crossref_primary_10_1109_TPWRS_2024_3521250
crossref_primary_10_1007_s10287_023_00469_9
crossref_primary_10_1049_gtd2_12895
crossref_primary_10_1016_j_apenergy_2023_121207
crossref_primary_10_1109_TPWRS_2018_2842093
crossref_primary_10_1049_gtd2_12299
crossref_primary_10_1016_j_ijepes_2020_106560
Cites_doi 10.2172/1031955
10.1016/j.apenergy.2013.02.057
10.1287/moor.16.1.119
10.1109/JPHOTOV.2017.2695328
10.1080/01621459.1963.10500845
10.1093/bioinformatics/bti201
10.1016/j.eneco.2008.10.005
10.1016/S1040-6190(99)00071-8
10.1109/TPWRS.2014.2300697
10.1109/TPWRS.2016.2614368
10.1109/TPAS.1982.317636
10.1145/331499.331504
10.1109/TPWRS.2016.2609538
10.1016/j.energy.2012.07.059
10.1109/TASSP.1978.1163055
10.1016/j.apenergy.2012.06.002
10.1109/TPWRS.2017.2694612
10.1016/j.enpol.2011.06.062
10.1109/TPWRS.2016.2596803
10.1198/jasa.2011.tm10183
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TPWRS.2017.2746379
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0679
EndPage 3039
ExternalDocumentID 10_1109_TPWRS_2017_2746379
8017598
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1029337; 1548015
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c295t-531179afa114d573fd8692f63e3241ab68431e2fcd0dce821fefdd413b263c093
IEDL.DBID RIE
ISICitedReferencesCount 98
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430733300063&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-8950
IngestDate Fri Jul 25 12:27:08 EDT 2025
Tue Nov 18 22:30:52 EST 2025
Sat Nov 29 02:52:12 EST 2025
Wed Aug 27 02:49:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-531179afa114d573fd8692f63e3241ab68431e2fcd0dce821fefdd413b263c093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1440-0158
0000-0002-2324-605X
PQID 2029143099
PQPubID 85441
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TPWRS_2017_2746379
ieee_primary_8017598
crossref_primary_10_1109_TPWRS_2017_2746379
proquest_journals_2029143099
PublicationCentury 2000
PublicationDate 2018-May
2018-5-00
20180501
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-May
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power systems
PublicationTitleAbbrev TPWRS
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
(ref24) 2014
ref14
ref11
ref2
ref1
ref17
ref16
ref19
macqueen (ref10) 0; 1
liu (ref21) 2017
mai (ref26) 2012
ref23
ref20
masiello (ref27) 2010
ref22
(ref25) 2012
ref28
ref8
liu (ref18) 2016
ref7
ref9
ref4
ref3
ref6
johnson (ref12) 2008
ref5
References_xml – ident: ref2
  doi: 10.2172/1031955
– ident: ref23
  doi: 10.1016/j.apenergy.2013.02.057
– ident: ref28
  doi: 10.1287/moor.16.1.119
– ident: ref16
  doi: 10.1109/JPHOTOV.2017.2695328
– ident: ref13
  doi: 10.1080/01621459.1963.10500845
– ident: ref14
  doi: 10.1093/bioinformatics/bti201
– ident: ref20
  doi: 10.1016/j.eneco.2008.10.005
– ident: ref19
  doi: 10.1016/S1040-6190(99)00071-8
– year: 2012
  ident: ref25
  article-title: Cost and performance data for power generation technologies
– ident: ref5
  doi: 10.1109/TPWRS.2014.2300697
– ident: ref8
  doi: 10.1109/TPWRS.2016.2614368
– ident: ref1
  doi: 10.1109/TPAS.1982.317636
– year: 2017
  ident: ref21
  article-title: A vector autoregression weather model for electricity supply and demand modeling
  publication-title: J Modern Power Syst Clean Energy
– ident: ref11
  doi: 10.1145/331499.331504
– year: 2010
  ident: ref27
  article-title: Research evaluation of wind generation, solar generation, and storage impact on the California grid
– ident: ref7
  doi: 10.1109/TPWRS.2016.2609538
– volume: 1
  start-page: 281
  year: 0
  ident: ref10
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proc 5th Berkeley Symp Math Statist Probab
– year: 2012
  ident: ref26
  article-title: Renewable electricity futures study: Executive summary
– ident: ref22
  doi: 10.1016/j.energy.2012.07.059
– year: 2008
  ident: ref12
  publication-title: Applied multivariate statistical analysis
– ident: ref17
  doi: 10.1109/TASSP.1978.1163055
– year: 2014
  ident: ref24
  publication-title: Annual Energy Outlook 2014
– ident: ref4
  doi: 10.1016/j.apenergy.2012.06.002
– ident: ref9
  doi: 10.1109/TPWRS.2017.2694612
– year: 2016
  ident: ref18
  article-title: Electricity capacity investments and cost recovery with renewables
– ident: ref3
  doi: 10.1016/j.enpol.2011.06.062
– ident: ref6
  doi: 10.1109/TPWRS.2016.2596803
– ident: ref15
  doi: 10.1198/jasa.2011.tm10183
SSID ssj0006679
Score 2.5933778
Snippet Power system capacity-expansion models are typically intractable if every operating period is represented. This issue is normally overcome by using a subset of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3029
SubjectTerms <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> k</tex-math> </inline-formula> </named-content>-means clustering
Cluster analysis
Clustering
Clustering algorithms
Clustering methods
Correlation
Dynamic time warping
hierarchical clustering
Investment
Load modeling
Mathematical models
Operating costs
Parameters
Planning
power system planning
representative days
Time series analysis
Title Hierarchical Clustering to Find Representative Operating Periods for Capacity-Expansion Modeling
URI https://ieeexplore.ieee.org/document/8017598
https://www.proquest.com/docview/2029143099
Volume 33
WOSCitedRecordID wos000430733300063&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0679
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006679
  issn: 0885-8950
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6qeNCDb7G-2IM3XU12m93NUYrFg2ipit7iZh8glLb0hT_f2U1aBEXwFshsCPmyM98k880AnHOvWkqknmpMl2mrFIxqn2qaGJbwsjSl51EofC8fHtTbW95twOVSC-Oci8Vn7iocxn_5dmhm4VPZNXpTmeVqBVaklJVWa-l1haj66imVUZVnyUIgk-TXz93X3lOo4pJXmIMJHsq2vgWhOFXlhyuO8aWz9b8724bNmkeSmwr4HWi4wS5sfOsuuAfvdx9BXRyHnfRJuz8LPRHwDJkOSQdTcdKLVbCV-GjuyOMoNFgOBl20G9oJQUJL2hhNDVJ1evuJjiN8WyNhflpQse_DS-f2uX1H64EK1LA8m1Lcb7j_tNeYBNlMcm-VyJkX3CGtSnUpFNIJx7yxiTVOsdQ7by2GuZIJbhDMA1gdDAfuEIhIjWGa-5YyvGVsWWqJxEZjqEPC46RqQrp4woWpu42HoRf9ImYdSV5EVIqASlGj0oSL5ZpR1WvjT-u9gMPSsoagCScLIIt6O05wHcuRGCIbPvp91TGs47VVVcl4AqvT8cydwpqZTz8m47P4pn0B-_fSDA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-tAEB48Khx98C7Wy3EffPOsJrvJZvMoxVI5tRatHN_iZi8glFZsK_58ZzdpERTBt0BmSciXnfkmmW8G4IQ7mUgRO6owXaZJKRhVLlY00iziZalLx4NQuJN1u_LhIe8twN-5FsZaG4rP7Jk_DP_yzUhP_aeyc_SmWZrLX7CUJgmLK7XW3O8KUXXWkzKlMk-jmUQmys_7vf-3d76OKzvDLExwX7j1IQyFuSqfnHGIMK31n93bBqzVTJJcVNBvwoIdbsHqh_6C2_DYfvL64jDuZECag6nvioBnyGREWpiMk9tQB1vJj14tuXn2LZa9QQ_tRmZMkNKSJsZTjWSdXr6h6_Bf14ifoOZ17Dtw37rsN9u0HqlANcvTCcUdhztQOYVpkEkz7owUOXOCWyRWsSqFREJhmdMmMtpKFjvrjMFAVzLBNcK5C4vD0dDuARGx1kxxl0jNE23KUmVIbRQGO6Q8NpMNiGdPuNB1v3E_9mJQhLwjyouASuFRKWpUGnA6X_Ncddv41nrb4zC3rCFowOEMyKLekGNcx3KkhsiH979edQy_2_3rTtG56v47gBW8jqzqGg9hcfIytUewrF8nT-OXP-GtewcQcdVT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Clustering+to+Find+Representative+Operating+Periods+for+Capacity-Expansion+Modeling&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Liu%2C+Yixian&rft.au=Sioshansi%2C+Ramteen&rft.au=Conejo%2C+Antonio+J.&rft.date=2018-05-01&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=33&rft.issue=3&rft.spage=3029&rft.epage=3039&rft_id=info:doi/10.1109%2FTPWRS.2017.2746379&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPWRS_2017_2746379
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon