Reinforcement Learning Based Network Coding for Drone-Aided Secure Wireless Communications

Active eavesdropper sends jamming signals to raise the transmit power of base stations and steal more information from cellular systems. Network coding resists the active eavesdroppers that cannot obtain all the data flows, but highly relies on the wiretap channel states that are rarely known in wir...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on communications Ročník 70; číslo 9; s. 5975 - 5988
Hlavní autori: Xiao, Liang, Li, Hongyan, Yu, Shi, Zhang, Yi, Wang, Li-Chun, Ma, Shaodan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0090-6778, 1558-0857
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Active eavesdropper sends jamming signals to raise the transmit power of base stations and steal more information from cellular systems. Network coding resists the active eavesdroppers that cannot obtain all the data flows, but highly relies on the wiretap channel states that are rarely known in wireless networks. In this paper, we present a reinforcement learning (RL) based random linear network coding scheme for drone-aided cellular systems to address eavesdropping. In this scheme, the network coding policy, including the encoded packet number, the packet and power allocation, is chosen based on the measured jamming power, previous transmission performance and BS channel states. A virtual model generates simulated experiences to update Q-values besides real experiences for faster policy optimization. We also propose a deep RL version and design a hierarchical architecture to further accelerate the policy exploration and improve the anti-eavesdropping performance, in terms of the intercept probability, the latency, the outage probability and the energy consumption. We analyze the computational complexity, drone deployment, secure coverage area and the performance bound of the proposed schemes, which are verified via simulation results.
AbstractList Active eavesdropper sends jamming signals to raise the transmit power of base stations and steal more information from cellular systems. Network coding resists the active eavesdroppers that cannot obtain all the data flows, but highly relies on the wiretap channel states that are rarely known in wireless networks. In this paper, we present a reinforcement learning (RL) based random linear network coding scheme for drone-aided cellular systems to address eavesdropping. In this scheme, the network coding policy, including the encoded packet number, the packet and power allocation, is chosen based on the measured jamming power, previous transmission performance and BS channel states. A virtual model generates simulated experiences to update Q-values besides real experiences for faster policy optimization. We also propose a deep RL version and design a hierarchical architecture to further accelerate the policy exploration and improve the anti-eavesdropping performance, in terms of the intercept probability, the latency, the outage probability and the energy consumption. We analyze the computational complexity, drone deployment, secure coverage area and the performance bound of the proposed schemes, which are verified via simulation results.
Author Xiao, Liang
Ma, Shaodan
Yu, Shi
Zhang, Yi
Li, Hongyan
Wang, Li-Chun
Author_xml – sequence: 1
  givenname: Liang
  orcidid: 0000-0003-2402-611X
  surname: Xiao
  fullname: Xiao, Liang
  organization: Department of Information and Communication Engineering, Xiamen University, Xiamen, China
– sequence: 2
  givenname: Hongyan
  orcidid: 0000-0002-0697-4709
  surname: Li
  fullname: Li, Hongyan
  organization: Department of Information and Communication Engineering, Xiamen University, Xiamen, China
– sequence: 3
  givenname: Shi
  orcidid: 0000-0002-1946-621X
  surname: Yu
  fullname: Yu, Shi
  organization: Department of Information and Communication Engineering, Xiamen University, Xiamen, China
– sequence: 4
  givenname: Yi
  orcidid: 0000-0001-8991-1983
  surname: Zhang
  fullname: Zhang, Yi
  email: yizhang@xmu.edu.cn
  organization: Department of Information and Communication Engineering, Xiamen University, Xiamen, China
– sequence: 5
  givenname: Li-Chun
  orcidid: 0000-0002-7883-6217
  surname: Wang
  fullname: Wang, Li-Chun
  email: lichun@cc.nctu.edu.tw
  organization: Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
– sequence: 6
  givenname: Shaodan
  orcidid: 0000-0001-5521-3650
  surname: Ma
  fullname: Ma, Shaodan
  email: shaodanma@um.edu.mo
  organization: State Key Laboratory of Internet of Things for Smart City and the Department of Electrical and Computer Engineering, University of Macau, Macao, SAR, China
BookMark eNp9kM1LAzEQxYNUsK3-A3pZ8Lx1kk02ybHWT6gWtCJ4WbK7U0ltszXZIv73ph948OBpYOa9ebxfj3Rc45CQUwoDSkFfTEeTh4cBA8YGGdUcJD8gXSqESkEJ2SFdAA1pLqU6Ir0Q5gDAIcu65O0JrZs1vsIlujYZo_HOuvfk0gSsk0dsvxr_kYyaerOMuuTKx-R0aOt4fsZq7TF5tR4XGEKULZdrZyvT2saFY3I4M4uAJ_vZJy8319PRXTqe3N6PhuO0Ylq0qYBclFwDmhlDpCXPKy4xZ7xUqqYoeJ0LVAIlCDQlUmQllcpgpmMHUemsT853f1e--VxjaIt5s_YuRhZMUq4FVwyiiu1UlW9C8DgrVt4ujf8uKBQbhsWWYbFhWOwZRpP6Y6psu23XemMX_1vPdlaLiL9ZWkXskmU_mxSBfA
CODEN IECMBT
CitedBy_id crossref_primary_10_1109_TCOMM_2023_3341856
crossref_primary_10_1109_TMC_2024_3505206
crossref_primary_10_1109_TWC_2024_3454073
crossref_primary_10_1109_TMC_2024_3502685
crossref_primary_10_1109_ACCESS_2024_3363890
crossref_primary_10_3390_jmse12060998
crossref_primary_10_1109_COMST_2022_3224279
crossref_primary_10_1002_nem_2297
crossref_primary_10_1109_JIOT_2024_3361447
crossref_primary_10_2139_ssrn_5053242
crossref_primary_10_1109_JIOT_2025_3543199
crossref_primary_10_1145_3703625
crossref_primary_10_1109_LWC_2025_3542374
crossref_primary_10_1109_TIV_2023_3274671
Cites_doi 10.1109/TWC.2017.2764891
10.1109/TVT.2020.2967026
10.1016/j.patcog.2006.04.041
10.1109/GLOCOM.2017.8255054
10.1109/TWC.2018.2838592
10.1109/GLOBECOM46510.2021.9685317
10.1109/INFOCOM.2015.7218560
10.1145/122344.122377
10.1109/JSAC.2013.130917
10.1109/JIOT.2018.2875065
10.1109/TWC.2020.3022399
10.1109/TWC.2016.2617328
10.1109/TMM.2007.907460
10.1109/TIT.2017.2710192
10.1109/TIT.2021.3116962
10.1109/TCOMM.2019.2930247
10.1109/TIFS.2019.2954748
10.1109/TMM.2016.2545403
10.1109/TIT.2006.881746
10.1109/TWC.2020.3024860
10.1109/TWC.2011.110711.102126
10.1109/TIFS.2019.2912074
10.1109/TWC.2014.2314713
10.1109/TWC.2017.2717822
10.1109/tnn.1998.712192
10.1109/TVT.2021.3077662
10.1109/TWC.2012.120412.112266
10.1109/TCOMM.2016.2645679
10.1109/TCOMM.2018.2792014
10.1109/TCOMM.2019.2911578
10.1109/TWC.2020.3000303
10.1109/TCOMM.2019.2892474
10.1109/TIFS.2021.3103062
10.1109/TWC.2019.2906177
10.1109/TNN.2003.809401
10.1109/TCOMM.2020.3043776
10.1109/TWC.2020.3034457
10.1109/TWC.2019.2892461
10.1109/JSAC.2021.3088672
10.1109/TVT.2017.2782726
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCOMM.2022.3194074
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0857
EndPage 5988
ExternalDocumentID 10_1109_TCOMM_2022_3194074
9840372
Genre orig-research
GrantInformation_xml – fundername: Science and Technology Development Fund, Macau SAR
  grantid: 0036/2019/A1; SKL-IOTSC(UM)-2021-2023)
– fundername: National Natural Science Foundation of China
  grantid: U21A20444; 61971366
  funderid: 10.13039/501100001809
– fundername: Research Committee of University of Macau
  grantid: MYRG2020-00095-FST
  funderid: 10.13039/501100004733
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-5065b490eaf2ee1b46c47e624b88d1e54d65e85e705eabe1e2b178ae390045c93
IEDL.DBID RIE
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000854601700024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0090-6778
IngestDate Mon Jun 30 10:12:50 EDT 2025
Tue Nov 18 21:27:19 EST 2025
Sat Nov 29 04:08:24 EST 2025
Wed Aug 27 02:15:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-5065b490eaf2ee1b46c47e624b88d1e54d65e85e705eabe1e2b178ae390045c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8991-1983
0000-0001-5521-3650
0000-0003-2402-611X
0000-0002-0697-4709
0000-0002-7883-6217
0000-0002-1946-621X
PQID 2714954820
PQPubID 85472
PageCount 14
ParticipantIDs proquest_journals_2714954820
crossref_primary_10_1109_TCOMM_2022_3194074
ieee_primary_9840372
crossref_citationtrail_10_1109_TCOMM_2022_3194074
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref38
Jin (ref16)
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
Brafman (ref18) 2002; 3
ref28
ref27
ref29
ref8
Kulkarni (ref19); 29
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref15
  doi: 10.1109/TWC.2017.2764891
– ident: ref34
  doi: 10.1109/TVT.2020.2967026
– ident: ref37
  doi: 10.1016/j.patcog.2006.04.041
– ident: ref39
  doi: 10.1109/GLOCOM.2017.8255054
– ident: ref6
  doi: 10.1109/TWC.2018.2838592
– ident: ref26
  doi: 10.1109/GLOBECOM46510.2021.9685317
– ident: ref17
  doi: 10.1109/INFOCOM.2015.7218560
– ident: ref35
  doi: 10.1145/122344.122377
– ident: ref2
  doi: 10.1109/JSAC.2013.130917
– start-page: 4868
  volume-title: Proc. Conf. Adv. Neural Inf. Process. Syst. (NIPS)
  ident: ref16
  article-title: Is Q-learning provably efficient?
– volume: 3
  start-page: 213
  year: 2002
  ident: ref18
  article-title: R-MAX—A general polynomial time algorithm for near-optimal reinforcement learning
  publication-title: J. Mach. Learn. Res.
– ident: ref22
  doi: 10.1109/JIOT.2018.2875065
– ident: ref14
  doi: 10.1109/TWC.2020.3022399
– ident: ref5
  doi: 10.1109/TWC.2016.2617328
– ident: ref30
  doi: 10.1109/TMM.2007.907460
– ident: ref42
  doi: 10.1109/TIT.2017.2710192
– ident: ref24
  doi: 10.1109/TIT.2021.3116962
– ident: ref27
  doi: 10.1109/TCOMM.2019.2930247
– ident: ref4
  doi: 10.1109/TIFS.2019.2954748
– ident: ref7
  doi: 10.1109/TMM.2016.2545403
– ident: ref8
  doi: 10.1109/TIT.2006.881746
– ident: ref28
  doi: 10.1109/TWC.2020.3024860
– ident: ref41
  doi: 10.1109/TWC.2011.110711.102126
– ident: ref1
  doi: 10.1109/TIFS.2019.2912074
– ident: ref29
  doi: 10.1109/TWC.2014.2314713
– ident: ref33
  doi: 10.1109/TWC.2017.2717822
– ident: ref40
  doi: 10.1109/tnn.1998.712192
– ident: ref12
  doi: 10.1109/TVT.2021.3077662
– ident: ref31
  doi: 10.1109/TWC.2012.120412.112266
– ident: ref32
  doi: 10.1109/TCOMM.2016.2645679
– ident: ref20
  doi: 10.1109/TCOMM.2018.2792014
– ident: ref9
  doi: 10.1109/TCOMM.2019.2911578
– ident: ref10
  doi: 10.1109/TWC.2020.3000303
– ident: ref23
  doi: 10.1109/TCOMM.2019.2892474
– ident: ref25
  doi: 10.1109/TIFS.2021.3103062
– ident: ref3
  doi: 10.1109/TWC.2019.2906177
– ident: ref43
  doi: 10.1109/TNN.2003.809401
– ident: ref38
  doi: 10.1109/TCOMM.2020.3043776
– ident: ref13
  doi: 10.1109/TWC.2020.3034457
– volume: 29
  start-page: 3675
  volume-title: Proc. Conf. Adv. Neural Inf. Process. Syst. (NIPS)
  ident: ref19
  article-title: Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation
– ident: ref21
  doi: 10.1109/TWC.2019.2892461
– ident: ref11
  doi: 10.1109/JSAC.2021.3088672
– ident: ref36
  doi: 10.1109/TVT.2017.2782726
SSID ssj0004033
Score 2.4872036
Snippet Active eavesdropper sends jamming signals to raise the transmit power of base stations and steal more information from cellular systems. Network coding resists...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5975
SubjectTerms Cellular communication
Coding
Drones
Eavesdropping
Energy consumption
Jamming
Learning
Network coding
Network latency
Neural networks
Optimization
Radio equipment
reinforcement learning
Relays
Resource management
secure communications
Wireless communications
Wireless networks
Wiretapping
Title Reinforcement Learning Based Network Coding for Drone-Aided Secure Wireless Communications
URI https://ieeexplore.ieee.org/document/9840372
https://www.proquest.com/docview/2714954820
Volume 70
WOSCitedRecordID wos000854601700024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0857
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004033
  issn: 0090-6778
  databaseCode: RIE
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61eNCDryrWFzl407XZbHaTHGu1eLBVpELxsmw2UymUVvrw9zvJbquiCN4WdhJCJsnMN5n5Qsh5DqHVA2YDpowMRAK4pRI9wLWM2ABNWqaMJ3G9l92u6vf1Y4VcrmphAMAnn8GV-_R3-XaSL1yorKERjUQSD9w1KZOiVuuzBpJFJeOkS2eXalkgw3Sj13rodBAKco4IVSOCEd-MkH9V5cdR7O1Le_t_I9shW6UfSZuF4ndJBcZ7ZPMLu2CNvDyBp0XNfQSQlkyqr_QaDZel3SL_m7YmznpRlKM308kYgubQ4m8fhwfqkmNHeBjSb4Uks33y3L7tte6C8imFIOc6ngcxehpGaAbZgAOERiS5kJBwYZSyIcTCJjGoGCSLITMQAjehVBlE2vl8uY4OSHWMYzgkNLERExF2liEWA85MYqxkRoeRQajCRZ2Ey7lN85Jn3D13MUo93mA69fpInT7SUh91crFq81awbPwpXXMaWEmWk18nJ0sVpuVGnKVcOggo0M85-r3VMdlwfRdpYyekOp8u4JSs5-_z4Wx65tfYB5nQzWA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED9EBfXBb3F-5sE3raZp2jSPOhXFbYpMEF9K09xkIJts07_fS9pNRRF8KzRpQy65u9_l7heAgwJDqzvcBjw1KpAJ0pZKdIfWMmEDMml5ajyJa0O1Wunjo76bgqNJLQwi-uQzPHaP_izf9os3Fyo70YRGIkUKdyaWUvCyWuuzCpJHFeekS2hX6bhEhuuTdv222SQwKARhVE0YRn4zQ_5elR_K2FuYy6X_jW0ZFitPkp2Wol-BKeytwsIXfsE1eLpHT4xa-Bggq7hUn9kZmS7LWmUGOKv3nf1i1I6dD_o9DE67ll77SDwylx77QuqQfSslGa7Dw-VFu34VVJcpBIXQ8SiIydcwUnPMOwIxNDIppMJESJOmNsRY2iTGNEbFY8wNhihMqNIcI-28vkJHGzDdozFsAktsxGVEH8sJjaHgJjFWcaPDyBBYEbIG4Xhus6JiGncXXrxkHnFwnXl5ZE4eWSWPGhxO-ryWPBt_tl5zEpi0rCa_BjtjEWbVVhxmQjkQKMnT2fq91z7MXbWbjaxx3brZhnn3nzKJbAemR4M33IXZ4n3UHQ72_Hr7AHLR0Kc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+Learning+Based+Network+Coding+for+Drone-Aided+Secure+Wireless+Communications&rft.jtitle=IEEE+transactions+on+communications&rft.au=Xiao%2C+Liang&rft.au=Li%2C+Hongyan&rft.au=Yu%2C+Shi&rft.au=Zhang%2C+Yi&rft.date=2022-09-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=70&rft.issue=9&rft.spage=5975&rft.epage=5988&rft_id=info:doi/10.1109%2FTCOMM.2022.3194074&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2022_3194074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon