A New Hybrid Fault Prognosis Method for MFS Systems Based on Distributed Neural Networks and Recursive Bayesian Algorithm
This article introduces a new hybrid prognosis method to predict a remaining useful lifetime (RUL) of multi-functional spoiler (MFS) systems. The MFS is vital to the healthy operation of aircraft spoiler control systems, and any fault or failure in these systems could compromise the safe operation o...
Saved in:
| Published in: | IEEE systems journal Vol. 14; no. 4; pp. 5407 - 5416 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1932-8184, 1937-9234 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This article introduces a new hybrid prognosis method to predict a remaining useful lifetime (RUL) of multi-functional spoiler (MFS) systems. The MFS is vital to the healthy operation of aircraft spoiler control systems, and any fault or failure in these systems could compromise the safe operation of the aircraft. The proposed prognosis methodology is a hybrid framework composed of a failure parameter estimation unit and an RUL unit. The failure parameter estimation unit observes the failure parameters using distributed neural networks via available measurements of the MFS system. Simultaneously, the remaining useful life is anticipated by the RUL unit employing the estimated failure parameter with a recursive Bayesian algorithm. Moreover, a relative accuracy (RA) measure is invoked to validate the effectiveness of the proposed method. Simulink model of the MFS system is verified by experimental data of the LJ200 series aircraft under fight condition. Furthermore, simulation test results indicate a high accuracy of the distributed structure compared to a centralized network. |
|---|---|
| AbstractList | This article introduces a new hybrid prognosis method to predict a remaining useful lifetime (RUL) of multi-functional spoiler (MFS) systems. The MFS is vital to the healthy operation of aircraft spoiler control systems, and any fault or failure in these systems could compromise the safe operation of the aircraft. The proposed prognosis methodology is a hybrid framework composed of a failure parameter estimation unit and an RUL unit. The failure parameter estimation unit observes the failure parameters using distributed neural networks via available measurements of the MFS system. Simultaneously, the remaining useful life is anticipated by the RUL unit employing the estimated failure parameter with a recursive Bayesian algorithm. Moreover, a relative accuracy (RA) measure is invoked to validate the effectiveness of the proposed method. Simulink model of the MFS system is verified by experimental data of the LJ200 series aircraft under fight condition. Furthermore, simulation test results indicate a high accuracy of the distributed structure compared to a centralized network. |
| Author | Kordestani, Mojtaba Saif, Mehrdad Samadi, M. Foad |
| Author_xml | – sequence: 1 givenname: Mojtaba orcidid: 0000-0002-9900-1307 surname: Kordestani fullname: Kordestani, Mojtaba email: kordest@uwindsor.ca organization: School of Electrical and Computer Engineering, University of Windsor, Windsor, ON, Canada – sequence: 2 givenname: M. Foad surname: Samadi fullname: Samadi, M. Foad email: fsamadi@uwindsor.ca organization: School of Electrical and Computer Engineering, University of Windsor, Windsor, ON, Canada – sequence: 3 givenname: Mehrdad orcidid: 0000-0002-7587-4189 surname: Saif fullname: Saif, Mehrdad email: msaif@uwindsor.ca organization: School of Electrical and Computer Engineering, University of Windsor, Windsor, ON, Canada |
| BookMark | eNp9kEtPwzAQhC1UJKDwB-BiiXOKH3EcH8ujFMRLFA6cIjfegEsaF9sB5d8TKOLAgdPsSPPtamcHDRrXAEL7lIwoJerocvY0exgxwsiIqTyjGdtA21RxmSjG08H3zJKc5ukW2glhQYjIhVTbqBvjG_jA027urcET3dYR33n33LhgA76G-OIMrpzH15MZnnUhwjLgYx3AYNfgUxuit_M29vYGWq_rXuKH868B68bgeyhbH-w79EgHweoGj-tn5218We6izUrXAfZ-dIgeJ2cPJ9Pk6vb84mR8lZRMiZgIIqRRhpZSSAla6N6aeV5mmZEZy4zQUEmuBe8_zGmlJKsI17mag-RpqVM-RIfrvSvv3loIsVi41jf9yYKlmUhTwijtU_k6VXoXgoeqKG3U0bomem3rgpLiq-jiu-jiq-jip-geZX_QlbdL7bv_oYM1ZAHgF1BEUaE4_wTxD4xn |
| CODEN | ISJEB2 |
| CitedBy_id | crossref_primary_10_1109_JSEN_2021_3093558 crossref_primary_10_1007_s40799_021_00503_y crossref_primary_10_1016_j_heliyon_2024_e26837 crossref_primary_10_1109_JSYST_2025_3529705 crossref_primary_10_1016_j_ast_2021_107134 crossref_primary_10_3390_make5010016 crossref_primary_10_1109_JSYST_2021_3057663 crossref_primary_10_1016_j_jmsy_2021_02_012 crossref_primary_10_1016_j_measurement_2022_111875 crossref_primary_10_1016_j_enbuild_2021_111318 crossref_primary_10_1016_j_ast_2020_106432 crossref_primary_10_1016_j_neucom_2022_04_055 crossref_primary_10_1109_ACCESS_2020_3044354 crossref_primary_10_1016_j_enbuild_2021_111077 crossref_primary_10_1155_2021_6612342 crossref_primary_10_1109_TIM_2023_3236342 crossref_primary_10_1016_j_enbuild_2021_111491 crossref_primary_10_1016_j_enbuild_2021_110875 crossref_primary_10_1109_JSYST_2020_3018126 crossref_primary_10_1109_TIM_2021_3091504 crossref_primary_10_1016_j_eswa_2021_116094 crossref_primary_10_1088_1361_6501_ad8cf6 crossref_primary_10_1111_ffe_14057 crossref_primary_10_1109_JSYST_2021_3079168 crossref_primary_10_3390_s23198124 crossref_primary_10_3390_s21248373 crossref_primary_10_1016_j_ymssp_2021_108087 crossref_primary_10_1016_j_rineng_2025_107214 crossref_primary_10_1109_JSYST_2021_3080125 crossref_primary_10_1155_2021_5533673 crossref_primary_10_1016_j_measurement_2021_110064 crossref_primary_10_1038_s41598_023_33887_5 crossref_primary_10_3390_act14080382 |
| Cites_doi | 10.1109/TASE.2011.2159265 10.1016/j.ymssp.2008.08.004 10.1109/ICPHM.2013.6621417 10.1109/TR.2014.2299152 10.1109/TR.2018.2882682 10.2514/1.I010171 10.1016/j.eswa.2009.01.007 10.1109/TIM.2018.2869193 10.1109/TASE.2019.2921285 10.1109/TIM.2014.2330494 10.1109/MWSCAS.2018.8624044 10.1109/TIM.2010.2078296 10.1109/TIE.2017.2733438 10.1109/TII.2017.2723943 10.1109/IranianCEE.2016.7585826 10.1109/JSEN.2009.2028767 10.1109/TR.2018.2864706 10.1007/978-3-030-20521-8_45 10.1109/TR.2019.2930195 10.1109/TCAPT.2006.870387 10.1109/ACCESS.2020.2979222 10.1109/TR.2018.2831256 10.1109/ICARCV.2012.6485422 10.1016/j.jsv.2015.08.013 10.1109/JSEN.2018.2829345 10.1109/JSYST.2014.2343752 10.1016/j.apenergy.2015.11.071 10.1109/ACCESS.2019.2914221 10.1109/TMECH.2020.2978136 10.1109/JSYST.2019.2960149 10.1109/TIE.2019.2931491 10.1109/TAES.2019.2939688 10.1109/TII.2018.2815036 10.1109/TII.2018.2881543 10.1109/JSEN.2019.2948997 10.1109/JSYST.2015.2466456 10.1109/JSYST.2015.2425793 10.1109/TSMCA.2010.2076396 10.1109/TIM.2016.2570398 10.1109/TASE.2012.2227960 10.1109/AERO.2004.1368172 10.1109/TASE.2009.2020508 10.1109/TIM.2015.2427891 10.1109/TIM.2005.847351 10.1109/TIM.2015.2444237 10.1007/s00184-008-0220-5 10.1016/j.ress.2015.07.013 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/JSYST.2020.2986162 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1937-9234 |
| EndPage | 5416 |
| ExternalDocumentID | 10_1109_JSYST_2020_2986162 9091593 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61873144 funderid: 10.13039/501100001809 – fundername: Natural Sciences and Engineering Research Council of Canada funderid: 10.13039/501100000038 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX CITATION |
| ID | FETCH-LOGICAL-c295t-5057d9d1c7577ea5a57ddb8c66d7626d5aef73a5319381f972f03a89be734ca43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000596009700075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-8184 |
| IngestDate | Sun Jun 29 16:48:11 EDT 2025 Tue Nov 18 21:18:43 EST 2025 Sat Nov 29 02:59:22 EST 2025 Wed Aug 27 02:27:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-5057d9d1c7577ea5a57ddb8c66d7626d5aef73a5319381f972f03a89be734ca43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9900-1307 0000-0002-7587-4189 |
| PQID | 2465440211 |
| PQPubID | 85494 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1109_JSYST_2020_2986162 crossref_citationtrail_10_1109_JSYST_2020_2986162 ieee_primary_9091593 proquest_journals_2465440211 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Dec. 2020-12-00 20201201 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-Dec. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE systems journal |
| PublicationTitleAbbrev | JSYST |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref18 ref46 ref45 ref48 ref47 ref42 ref41 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 maggiore (ref44) 0 yang (ref19) 2009; 36 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 zhang (ref36) 0 ref29 |
| References_xml | – ident: ref21 doi: 10.1109/TASE.2011.2159265 – ident: ref22 doi: 10.1016/j.ymssp.2008.08.004 – ident: ref45 doi: 10.1109/ICPHM.2013.6621417 – ident: ref30 doi: 10.1109/TR.2014.2299152 – ident: ref40 doi: 10.1109/TR.2018.2882682 – start-page: 561 year: 0 ident: ref44 article-title: Definition of parametric methods for fault analysis applied to an electromechanical servomechanism affected by multiple failures publication-title: Proc 2nd Eur Conf Prognostics Health Manage Soc – ident: ref42 doi: 10.2514/1.I010171 – volume: 36 start-page: 9378 year: 2009 ident: ref19 article-title: Multi-step ahead direct prediction for the machine condition prognosis using regression trees and neuro-fuzzy systems publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.01.007 – ident: ref39 doi: 10.1109/TIM.2018.2869193 – ident: ref33 doi: 10.1109/TASE.2019.2921285 – ident: ref20 doi: 10.1109/TIM.2014.2330494 – ident: ref18 doi: 10.1109/MWSCAS.2018.8624044 – ident: ref37 doi: 10.1109/TIM.2010.2078296 – ident: ref38 doi: 10.1109/TIE.2017.2733438 – ident: ref27 doi: 10.1109/TII.2017.2723943 – ident: ref14 doi: 10.1109/IranianCEE.2016.7585826 – ident: ref7 doi: 10.1109/JSEN.2009.2028767 – ident: ref47 doi: 10.1109/TR.2018.2864706 – ident: ref12 doi: 10.1007/978-3-030-20521-8_45 – ident: ref2 doi: 10.1109/TR.2019.2930195 – ident: ref1 doi: 10.1109/TCAPT.2006.870387 – ident: ref11 doi: 10.1109/ACCESS.2020.2979222 – ident: ref41 doi: 10.1109/TR.2018.2831256 – ident: ref6 doi: 10.1109/ICARCV.2012.6485422 – ident: ref49 doi: 10.1016/j.jsv.2015.08.013 – ident: ref16 doi: 10.1109/JSEN.2018.2829345 – ident: ref3 doi: 10.1109/JSYST.2014.2343752 – ident: ref46 doi: 10.1016/j.apenergy.2015.11.071 – ident: ref32 doi: 10.1109/ACCESS.2019.2914221 – ident: ref26 doi: 10.1109/TMECH.2020.2978136 – ident: ref13 doi: 10.1109/JSYST.2019.2960149 – ident: ref31 doi: 10.1109/TIE.2019.2931491 – ident: ref34 doi: 10.1109/TAES.2019.2939688 – ident: ref9 doi: 10.1109/TII.2018.2815036 – ident: ref17 doi: 10.1109/TII.2018.2881543 – start-page: 25 year: 0 ident: ref36 article-title: A novel architecture for an integrated fault diagnostic/prognostic system publication-title: Proc AAAI Symp – ident: ref35 doi: 10.1109/JSEN.2019.2948997 – ident: ref4 doi: 10.1109/JSYST.2015.2466456 – ident: ref28 doi: 10.1109/JSYST.2015.2425793 – ident: ref23 doi: 10.1109/TSMCA.2010.2076396 – ident: ref29 doi: 10.1109/TIM.2016.2570398 – ident: ref8 doi: 10.1109/TASE.2012.2227960 – ident: ref43 doi: 10.1109/AERO.2004.1368172 – ident: ref15 doi: 10.1109/TASE.2009.2020508 – ident: ref10 doi: 10.1109/TIM.2015.2427891 – ident: ref24 doi: 10.1109/TIM.2005.847351 – ident: ref25 doi: 10.1109/TIM.2015.2444237 – ident: ref5 doi: 10.1007/s00184-008-0220-5 – ident: ref48 doi: 10.1016/j.ress.2015.07.013 |
| SSID | ssj0058579 |
| Score | 2.4071534 |
| Snippet | This article introduces a new hybrid prognosis method to predict a remaining useful lifetime (RUL) of multi-functional spoiler (MFS) systems. The MFS is vital... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5407 |
| SubjectTerms | Aircraft Aircraft control Algorithms Atmospheric modeling Bayes methods Bayesian analysis Degradation model Failure Fault diagnosis fault prognosis Neural networks Parameter estimation Prognosis Prognostics and health management remaining useful life Uncertainty |
| Title | A New Hybrid Fault Prognosis Method for MFS Systems Based on Distributed Neural Networks and Recursive Bayesian Algorithm |
| URI | https://ieeexplore.ieee.org/document/9091593 https://www.proquest.com/docview/2465440211 |
| Volume | 14 |
| WOSCitedRecordID | wos000596009700075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1937-9234 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0058579 issn: 1932-8184 databaseCode: RIE dateStart: 20070101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-yMGbVtumTZrj-lhEcBFXQU8lTVJdWFvZ7Qr7782k3UVRBG8NZNLSaeaRznwfwJHGMCFjiZcZm65GWviepDnzeOYrFkijaa4c2QTvdpOnJ3E3ByezXhhjjCs-M6d46f7l61KN8ajsTFjnFgs6D_Ocs7pXa2p1bdTrcPUwHvGsE4qmDTK-OLvpPfcebCoY-qehSFjAwm9OyLGq_DDFzr90Vv_3ZGuw0sSRpF0rfh3mTLEBy1_QBTdh0ibWhJHrCTZlkY4cDypyNyyxsq4_IreOOprYmJXcdnqkQS4n59araVIW5BIRdZEMyw4RwcPerFuXjI-ILDS5x4N6rH23IhODrZikPXgph_3q9W0LHjtXDxfXXsO04KlQxJWHWYoWOlA85tzIWNqhzhLFmLbGkulYmpxTifvVevhc8DD3qUxEZjiNlIzoNiwUZWF2gCAHZKSDMIsSGeVMiyQwoYw1pULZxUwLgumrT1UDQ45sGIPUpSO-SJ26UlRX2qirBcczmfcahOPP2ZuooNnMRjct2J9qOG326SgNEU7OptBBsPu71B4s4dp1Acs-LFTDsTmARfVR9UfDQ_cJfgIVjdlo |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NbRLjYR8MtO7TD7xBtsR2nPixwKoCazXRIo2nyLEdqNQlU5si9b-fz0krEAhpb7Hki6NcfB_O3e8H8MZgmJCLNMitS1e5kWGgWCGCJA-1iJQ1rNCebCIZDtO7O3m7Ae_WvTDWWl98Zi_x0v_LN5Ve4FHZlXTOLZbsGWzFnNOw6dZa2V0X93pkPYxIAueG-KpFJpRXn0ffR2OXDNLwkspURIL-4YY8r8pfxth7mN7e055tH3bbSJJ0G9UfwIYtX8KL3_AFD2HZJc6Ikf4S27JITy2mNbmdVVhbN5mTgSePJi5qJYPeiLTY5eS982uGVCX5iJi6SIflhojh4RYbNkXjc6JKQ77iUT1WvzuRpcVmTNKd_qhmk_rn_Sv41rsef-gHLddCoKmM6wDzFCNNpJM4SayKlRuaPNVCGGcuhYmVLRKmcMc6H1_IhBYhU6nMbcK4Vpy9hs2yKu0REGSB5CaiOU8VL4SRaWSpig1jUrub2Q5Eq1ef6RaIHPkwpplPSEKZeXVlqK6sVVcH3q5lHhoYjv_OPkQFrWe2uunA6UrDWbtT5xlFQDmXREfR8b-lLuB5fzy4yW4-Db-cwA6u05SznMJmPVvYM9jWv-rJfHbuP8dHi9_crw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Hybrid+Fault+Prognosis+Method+for+MFS+Systems+Based+on+Distributed+Neural+Networks+and+Recursive+Bayesian+Algorithm&rft.jtitle=IEEE+systems+journal&rft.au=Kordestani%2C+Mojtaba&rft.au=Samadi%2C+M.+Foad&rft.au=Saif%2C+Mehrdad&rft.date=2020-12-01&rft.pub=IEEE&rft.issn=1932-8184&rft.volume=14&rft.issue=4&rft.spage=5407&rft.epage=5416&rft_id=info:doi/10.1109%2FJSYST.2020.2986162&rft.externalDocID=9091593 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-8184&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-8184&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-8184&client=summon |