A New Hybrid Fault Prognosis Method for MFS Systems Based on Distributed Neural Networks and Recursive Bayesian Algorithm

This article introduces a new hybrid prognosis method to predict a remaining useful lifetime (RUL) of multi-functional spoiler (MFS) systems. The MFS is vital to the healthy operation of aircraft spoiler control systems, and any fault or failure in these systems could compromise the safe operation o...

Full description

Saved in:
Bibliographic Details
Published in:IEEE systems journal Vol. 14; no. 4; pp. 5407 - 5416
Main Authors: Kordestani, Mojtaba, Samadi, M. Foad, Saif, Mehrdad
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1932-8184, 1937-9234
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This article introduces a new hybrid prognosis method to predict a remaining useful lifetime (RUL) of multi-functional spoiler (MFS) systems. The MFS is vital to the healthy operation of aircraft spoiler control systems, and any fault or failure in these systems could compromise the safe operation of the aircraft. The proposed prognosis methodology is a hybrid framework composed of a failure parameter estimation unit and an RUL unit. The failure parameter estimation unit observes the failure parameters using distributed neural networks via available measurements of the MFS system. Simultaneously, the remaining useful life is anticipated by the RUL unit employing the estimated failure parameter with a recursive Bayesian algorithm. Moreover, a relative accuracy (RA) measure is invoked to validate the effectiveness of the proposed method. Simulink model of the MFS system is verified by experimental data of the LJ200 series aircraft under fight condition. Furthermore, simulation test results indicate a high accuracy of the distributed structure compared to a centralized network.
AbstractList This article introduces a new hybrid prognosis method to predict a remaining useful lifetime (RUL) of multi-functional spoiler (MFS) systems. The MFS is vital to the healthy operation of aircraft spoiler control systems, and any fault or failure in these systems could compromise the safe operation of the aircraft. The proposed prognosis methodology is a hybrid framework composed of a failure parameter estimation unit and an RUL unit. The failure parameter estimation unit observes the failure parameters using distributed neural networks via available measurements of the MFS system. Simultaneously, the remaining useful life is anticipated by the RUL unit employing the estimated failure parameter with a recursive Bayesian algorithm. Moreover, a relative accuracy (RA) measure is invoked to validate the effectiveness of the proposed method. Simulink model of the MFS system is verified by experimental data of the LJ200 series aircraft under fight condition. Furthermore, simulation test results indicate a high accuracy of the distributed structure compared to a centralized network.
Author Kordestani, Mojtaba
Saif, Mehrdad
Samadi, M. Foad
Author_xml – sequence: 1
  givenname: Mojtaba
  orcidid: 0000-0002-9900-1307
  surname: Kordestani
  fullname: Kordestani, Mojtaba
  email: kordest@uwindsor.ca
  organization: School of Electrical and Computer Engineering, University of Windsor, Windsor, ON, Canada
– sequence: 2
  givenname: M. Foad
  surname: Samadi
  fullname: Samadi, M. Foad
  email: fsamadi@uwindsor.ca
  organization: School of Electrical and Computer Engineering, University of Windsor, Windsor, ON, Canada
– sequence: 3
  givenname: Mehrdad
  orcidid: 0000-0002-7587-4189
  surname: Saif
  fullname: Saif, Mehrdad
  email: msaif@uwindsor.ca
  organization: School of Electrical and Computer Engineering, University of Windsor, Windsor, ON, Canada
BookMark eNp9kEtPwzAQhC1UJKDwB-BiiXOKH3EcH8ujFMRLFA6cIjfegEsaF9sB5d8TKOLAgdPsSPPtamcHDRrXAEL7lIwoJerocvY0exgxwsiIqTyjGdtA21RxmSjG08H3zJKc5ukW2glhQYjIhVTbqBvjG_jA027urcET3dYR33n33LhgA76G-OIMrpzH15MZnnUhwjLgYx3AYNfgUxuit_M29vYGWq_rXuKH868B68bgeyhbH-w79EgHweoGj-tn5218We6izUrXAfZ-dIgeJ2cPJ9Pk6vb84mR8lZRMiZgIIqRRhpZSSAla6N6aeV5mmZEZy4zQUEmuBe8_zGmlJKsI17mag-RpqVM-RIfrvSvv3loIsVi41jf9yYKlmUhTwijtU_k6VXoXgoeqKG3U0bomem3rgpLiq-jiu-jiq-jip-geZX_QlbdL7bv_oYM1ZAHgF1BEUaE4_wTxD4xn
CODEN ISJEB2
CitedBy_id crossref_primary_10_1109_JSEN_2021_3093558
crossref_primary_10_1007_s40799_021_00503_y
crossref_primary_10_1016_j_heliyon_2024_e26837
crossref_primary_10_1109_JSYST_2025_3529705
crossref_primary_10_1016_j_ast_2021_107134
crossref_primary_10_3390_make5010016
crossref_primary_10_1109_JSYST_2021_3057663
crossref_primary_10_1016_j_jmsy_2021_02_012
crossref_primary_10_1016_j_measurement_2022_111875
crossref_primary_10_1016_j_enbuild_2021_111318
crossref_primary_10_1016_j_ast_2020_106432
crossref_primary_10_1016_j_neucom_2022_04_055
crossref_primary_10_1109_ACCESS_2020_3044354
crossref_primary_10_1016_j_enbuild_2021_111077
crossref_primary_10_1155_2021_6612342
crossref_primary_10_1109_TIM_2023_3236342
crossref_primary_10_1016_j_enbuild_2021_111491
crossref_primary_10_1016_j_enbuild_2021_110875
crossref_primary_10_1109_JSYST_2020_3018126
crossref_primary_10_1109_TIM_2021_3091504
crossref_primary_10_1016_j_eswa_2021_116094
crossref_primary_10_1088_1361_6501_ad8cf6
crossref_primary_10_1111_ffe_14057
crossref_primary_10_1109_JSYST_2021_3079168
crossref_primary_10_3390_s23198124
crossref_primary_10_3390_s21248373
crossref_primary_10_1016_j_ymssp_2021_108087
crossref_primary_10_1016_j_rineng_2025_107214
crossref_primary_10_1109_JSYST_2021_3080125
crossref_primary_10_1155_2021_5533673
crossref_primary_10_1016_j_measurement_2021_110064
crossref_primary_10_1038_s41598_023_33887_5
crossref_primary_10_3390_act14080382
Cites_doi 10.1109/TASE.2011.2159265
10.1016/j.ymssp.2008.08.004
10.1109/ICPHM.2013.6621417
10.1109/TR.2014.2299152
10.1109/TR.2018.2882682
10.2514/1.I010171
10.1016/j.eswa.2009.01.007
10.1109/TIM.2018.2869193
10.1109/TASE.2019.2921285
10.1109/TIM.2014.2330494
10.1109/MWSCAS.2018.8624044
10.1109/TIM.2010.2078296
10.1109/TIE.2017.2733438
10.1109/TII.2017.2723943
10.1109/IranianCEE.2016.7585826
10.1109/JSEN.2009.2028767
10.1109/TR.2018.2864706
10.1007/978-3-030-20521-8_45
10.1109/TR.2019.2930195
10.1109/TCAPT.2006.870387
10.1109/ACCESS.2020.2979222
10.1109/TR.2018.2831256
10.1109/ICARCV.2012.6485422
10.1016/j.jsv.2015.08.013
10.1109/JSEN.2018.2829345
10.1109/JSYST.2014.2343752
10.1016/j.apenergy.2015.11.071
10.1109/ACCESS.2019.2914221
10.1109/TMECH.2020.2978136
10.1109/JSYST.2019.2960149
10.1109/TIE.2019.2931491
10.1109/TAES.2019.2939688
10.1109/TII.2018.2815036
10.1109/TII.2018.2881543
10.1109/JSEN.2019.2948997
10.1109/JSYST.2015.2466456
10.1109/JSYST.2015.2425793
10.1109/TSMCA.2010.2076396
10.1109/TIM.2016.2570398
10.1109/TASE.2012.2227960
10.1109/AERO.2004.1368172
10.1109/TASE.2009.2020508
10.1109/TIM.2015.2427891
10.1109/TIM.2005.847351
10.1109/TIM.2015.2444237
10.1007/s00184-008-0220-5
10.1016/j.ress.2015.07.013
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JSYST.2020.2986162
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1937-9234
EndPage 5416
ExternalDocumentID 10_1109_JSYST_2020_2986162
9091593
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61873144
  funderid: 10.13039/501100001809
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: 10.13039/501100000038
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c295t-5057d9d1c7577ea5a57ddb8c66d7626d5aef73a5319381f972f03a89be734ca43
IEDL.DBID RIE
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000596009700075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-8184
IngestDate Sun Jun 29 16:48:11 EDT 2025
Tue Nov 18 21:18:43 EST 2025
Sat Nov 29 02:59:22 EST 2025
Wed Aug 27 02:27:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-5057d9d1c7577ea5a57ddb8c66d7626d5aef73a5319381f972f03a89be734ca43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9900-1307
0000-0002-7587-4189
PQID 2465440211
PQPubID 85494
PageCount 10
ParticipantIDs crossref_primary_10_1109_JSYST_2020_2986162
crossref_citationtrail_10_1109_JSYST_2020_2986162
ieee_primary_9091593
proquest_journals_2465440211
PublicationCentury 2000
PublicationDate 2020-Dec.
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-Dec.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE systems journal
PublicationTitleAbbrev JSYST
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref18
ref46
ref45
ref48
ref47
ref42
ref41
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
maggiore (ref44) 0
yang (ref19) 2009; 36
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
zhang (ref36) 0
ref29
References_xml – ident: ref21
  doi: 10.1109/TASE.2011.2159265
– ident: ref22
  doi: 10.1016/j.ymssp.2008.08.004
– ident: ref45
  doi: 10.1109/ICPHM.2013.6621417
– ident: ref30
  doi: 10.1109/TR.2014.2299152
– ident: ref40
  doi: 10.1109/TR.2018.2882682
– start-page: 561
  year: 0
  ident: ref44
  article-title: Definition of parametric methods for fault analysis applied to an electromechanical servomechanism affected by multiple failures
  publication-title: Proc 2nd Eur Conf Prognostics Health Manage Soc
– ident: ref42
  doi: 10.2514/1.I010171
– volume: 36
  start-page: 9378
  year: 2009
  ident: ref19
  article-title: Multi-step ahead direct prediction for the machine condition prognosis using regression trees and neuro-fuzzy systems
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.01.007
– ident: ref39
  doi: 10.1109/TIM.2018.2869193
– ident: ref33
  doi: 10.1109/TASE.2019.2921285
– ident: ref20
  doi: 10.1109/TIM.2014.2330494
– ident: ref18
  doi: 10.1109/MWSCAS.2018.8624044
– ident: ref37
  doi: 10.1109/TIM.2010.2078296
– ident: ref38
  doi: 10.1109/TIE.2017.2733438
– ident: ref27
  doi: 10.1109/TII.2017.2723943
– ident: ref14
  doi: 10.1109/IranianCEE.2016.7585826
– ident: ref7
  doi: 10.1109/JSEN.2009.2028767
– ident: ref47
  doi: 10.1109/TR.2018.2864706
– ident: ref12
  doi: 10.1007/978-3-030-20521-8_45
– ident: ref2
  doi: 10.1109/TR.2019.2930195
– ident: ref1
  doi: 10.1109/TCAPT.2006.870387
– ident: ref11
  doi: 10.1109/ACCESS.2020.2979222
– ident: ref41
  doi: 10.1109/TR.2018.2831256
– ident: ref6
  doi: 10.1109/ICARCV.2012.6485422
– ident: ref49
  doi: 10.1016/j.jsv.2015.08.013
– ident: ref16
  doi: 10.1109/JSEN.2018.2829345
– ident: ref3
  doi: 10.1109/JSYST.2014.2343752
– ident: ref46
  doi: 10.1016/j.apenergy.2015.11.071
– ident: ref32
  doi: 10.1109/ACCESS.2019.2914221
– ident: ref26
  doi: 10.1109/TMECH.2020.2978136
– ident: ref13
  doi: 10.1109/JSYST.2019.2960149
– ident: ref31
  doi: 10.1109/TIE.2019.2931491
– ident: ref34
  doi: 10.1109/TAES.2019.2939688
– ident: ref9
  doi: 10.1109/TII.2018.2815036
– ident: ref17
  doi: 10.1109/TII.2018.2881543
– start-page: 25
  year: 0
  ident: ref36
  article-title: A novel architecture for an integrated fault diagnostic/prognostic system
  publication-title: Proc AAAI Symp
– ident: ref35
  doi: 10.1109/JSEN.2019.2948997
– ident: ref4
  doi: 10.1109/JSYST.2015.2466456
– ident: ref28
  doi: 10.1109/JSYST.2015.2425793
– ident: ref23
  doi: 10.1109/TSMCA.2010.2076396
– ident: ref29
  doi: 10.1109/TIM.2016.2570398
– ident: ref8
  doi: 10.1109/TASE.2012.2227960
– ident: ref43
  doi: 10.1109/AERO.2004.1368172
– ident: ref15
  doi: 10.1109/TASE.2009.2020508
– ident: ref10
  doi: 10.1109/TIM.2015.2427891
– ident: ref24
  doi: 10.1109/TIM.2005.847351
– ident: ref25
  doi: 10.1109/TIM.2015.2444237
– ident: ref5
  doi: 10.1007/s00184-008-0220-5
– ident: ref48
  doi: 10.1016/j.ress.2015.07.013
SSID ssj0058579
Score 2.4071534
Snippet This article introduces a new hybrid prognosis method to predict a remaining useful lifetime (RUL) of multi-functional spoiler (MFS) systems. The MFS is vital...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5407
SubjectTerms Aircraft
Aircraft control
Algorithms
Atmospheric modeling
Bayes methods
Bayesian analysis
Degradation model
Failure
Fault diagnosis
fault prognosis
Neural networks
Parameter estimation
Prognosis
Prognostics and health management
remaining useful life
Uncertainty
Title A New Hybrid Fault Prognosis Method for MFS Systems Based on Distributed Neural Networks and Recursive Bayesian Algorithm
URI https://ieeexplore.ieee.org/document/9091593
https://www.proquest.com/docview/2465440211
Volume 14
WOSCitedRecordID wos000596009700075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1937-9234
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0058579
  issn: 1932-8184
  databaseCode: RIE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-yMGbVtumTZrj-lhEcBFXQU8lTVJdWFvZ7Qr7782k3UVRBG8NZNLSaeaRznwfwJHGMCFjiZcZm65GWviepDnzeOYrFkijaa4c2QTvdpOnJ3E3ByezXhhjjCs-M6d46f7l61KN8ajsTFjnFgs6D_Ocs7pXa2p1bdTrcPUwHvGsE4qmDTK-OLvpPfcebCoY-qehSFjAwm9OyLGq_DDFzr90Vv_3ZGuw0sSRpF0rfh3mTLEBy1_QBTdh0ibWhJHrCTZlkY4cDypyNyyxsq4_IreOOprYmJXcdnqkQS4n59araVIW5BIRdZEMyw4RwcPerFuXjI-ILDS5x4N6rH23IhODrZikPXgph_3q9W0LHjtXDxfXXsO04KlQxJWHWYoWOlA85tzIWNqhzhLFmLbGkulYmpxTifvVevhc8DD3qUxEZjiNlIzoNiwUZWF2gCAHZKSDMIsSGeVMiyQwoYw1pULZxUwLgumrT1UDQ45sGIPUpSO-SJ26UlRX2qirBcczmfcahOPP2ZuooNnMRjct2J9qOG326SgNEU7OptBBsPu71B4s4dp1Acs-LFTDsTmARfVR9UfDQ_cJfgIVjdlo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NbRLjYR8MtO7TD7xBtsR2nPixwKoCazXRIo2nyLEdqNQlU5si9b-fz0krEAhpb7Hki6NcfB_O3e8H8MZgmJCLNMitS1e5kWGgWCGCJA-1iJQ1rNCebCIZDtO7O3m7Ae_WvTDWWl98Zi_x0v_LN5Ve4FHZlXTOLZbsGWzFnNOw6dZa2V0X93pkPYxIAueG-KpFJpRXn0ffR2OXDNLwkspURIL-4YY8r8pfxth7mN7e055tH3bbSJJ0G9UfwIYtX8KL3_AFD2HZJc6Ikf4S27JITy2mNbmdVVhbN5mTgSePJi5qJYPeiLTY5eS982uGVCX5iJi6SIflhojh4RYbNkXjc6JKQ77iUT1WvzuRpcVmTNKd_qhmk_rn_Sv41rsef-gHLddCoKmM6wDzFCNNpJM4SayKlRuaPNVCGGcuhYmVLRKmcMc6H1_IhBYhU6nMbcK4Vpy9hs2yKu0REGSB5CaiOU8VL4SRaWSpig1jUrub2Q5Eq1ef6RaIHPkwpplPSEKZeXVlqK6sVVcH3q5lHhoYjv_OPkQFrWe2uunA6UrDWbtT5xlFQDmXREfR8b-lLuB5fzy4yW4-Db-cwA6u05SznMJmPVvYM9jWv-rJfHbuP8dHi9_crw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Hybrid+Fault+Prognosis+Method+for+MFS+Systems+Based+on+Distributed+Neural+Networks+and+Recursive+Bayesian+Algorithm&rft.jtitle=IEEE+systems+journal&rft.au=Kordestani%2C+Mojtaba&rft.au=Samadi%2C+M.+Foad&rft.au=Saif%2C+Mehrdad&rft.date=2020-12-01&rft.pub=IEEE&rft.issn=1932-8184&rft.volume=14&rft.issue=4&rft.spage=5407&rft.epage=5416&rft_id=info:doi/10.1109%2FJSYST.2020.2986162&rft.externalDocID=9091593
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-8184&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-8184&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-8184&client=summon