Cooperative Artificial Bee Colony Algorithm With Multiple Populations for Interval Multiobjective Optimization Problems

In practical engineering optimization problems (such as risk assessments), the parameters of the objective functions can be intervals because of noise and uncertainty; however, such problems cannot be solved by traditional multiobjective optimization methods. Yet, very little study has addressed int...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on fuzzy systems Ročník 27; číslo 5; s. 1052 - 1065
Hlavní autoři: Zhang, Liming, Wang, Saisai, Zhang, Kai, Zhang, Xiuqing, Sun, Zhixue, Zhang, Hao, Chipecane, Miguel Tome, Yao, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1063-6706, 1941-0034
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In practical engineering optimization problems (such as risk assessments), the parameters of the objective functions can be intervals because of noise and uncertainty; however, such problems cannot be solved by traditional multiobjective optimization methods. Yet, very little study has addressed interval multiobjective optimization methods compared to traditional multiobjective optimization methods. Therefore, a novel interval multiobjective optimization method called the Interval Cooperative Multiobjective Artificial Bee Colony Algorithm (ICMOABC) based on multiple populations for multiple objectives and interval credibility is proposed. Interval credibility is selected as the interval dominant method. Interval credibility is easy to combine with multiobjective optimization methods because it can describe the mean and width of intervals without increasing the dimension of the objective functions. The proposed algorithm has M single-objective optimization subpopulations updated by artificial bee colony algorithm, meaning it uses evolutionary resources more efficiently. In order to bring in diversity, the elitist learning strategy is used in the archive. The results of ICMOABC on various benchmark problems sets with different characteristics demonstrate its superior performance compared to some state-of-the-art algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1063-6706
1941-0034
DOI:10.1109/TFUZZ.2018.2872125