Cooperative Artificial Bee Colony Algorithm With Multiple Populations for Interval Multiobjective Optimization Problems

In practical engineering optimization problems (such as risk assessments), the parameters of the objective functions can be intervals because of noise and uncertainty; however, such problems cannot be solved by traditional multiobjective optimization methods. Yet, very little study has addressed int...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on fuzzy systems Ročník 27; číslo 5; s. 1052 - 1065
Hlavní autoři: Zhang, Liming, Wang, Saisai, Zhang, Kai, Zhang, Xiuqing, Sun, Zhixue, Zhang, Hao, Chipecane, Miguel Tome, Yao, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1063-6706, 1941-0034
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In practical engineering optimization problems (such as risk assessments), the parameters of the objective functions can be intervals because of noise and uncertainty; however, such problems cannot be solved by traditional multiobjective optimization methods. Yet, very little study has addressed interval multiobjective optimization methods compared to traditional multiobjective optimization methods. Therefore, a novel interval multiobjective optimization method called the Interval Cooperative Multiobjective Artificial Bee Colony Algorithm (ICMOABC) based on multiple populations for multiple objectives and interval credibility is proposed. Interval credibility is selected as the interval dominant method. Interval credibility is easy to combine with multiobjective optimization methods because it can describe the mean and width of intervals without increasing the dimension of the objective functions. The proposed algorithm has M single-objective optimization subpopulations updated by artificial bee colony algorithm, meaning it uses evolutionary resources more efficiently. In order to bring in diversity, the elitist learning strategy is used in the archive. The results of ICMOABC on various benchmark problems sets with different characteristics demonstrate its superior performance compared to some state-of-the-art algorithms.
AbstractList In practical engineering optimization problems (such as risk assessments), the parameters of the objective functions can be intervals because of noise and uncertainty; however, such problems cannot be solved by traditional multiobjective optimization methods. Yet, very little study has addressed interval multiobjective optimization methods compared to traditional multiobjective optimization methods. Therefore, a novel interval multiobjective optimization method called the Interval Cooperative Multiobjective Artificial Bee Colony Algorithm (ICMOABC) based on multiple populations for multiple objectives and interval credibility is proposed. Interval credibility is selected as the interval dominant method. Interval credibility is easy to combine with multiobjective optimization methods because it can describe the mean and width of intervals without increasing the dimension of the objective functions. The proposed algorithm has M single-objective optimization subpopulations updated by artificial bee colony algorithm, meaning it uses evolutionary resources more efficiently. In order to bring in diversity, the elitist learning strategy is used in the archive. The results of ICMOABC on various benchmark problems sets with different characteristics demonstrate its superior performance compared to some state-of-the-art algorithms.
Author Zhang, Xiuqing
Zhang, Liming
Yao, Jun
Wang, Saisai
Sun, Zhixue
Zhang, Hao
Chipecane, Miguel Tome
Zhang, Kai
Author_xml – sequence: 1
  givenname: Liming
  surname: Zhang
  fullname: Zhang, Liming
  email: zhangliming@upc.edu.cn
  organization: Department of Oil Extraction Engineering, China University of Petroleum, Qingdao, Shandong, China
– sequence: 2
  givenname: Saisai
  surname: Wang
  fullname: Wang, Saisai
  email: z16020143@s.upc.edu.cn
  organization: Department of Reservoir Engineering, China University of Petroleum, Qingdao, Shandong, China
– sequence: 3
  givenname: Kai
  orcidid: 0000-0002-6691-6762
  surname: Zhang
  fullname: Zhang, Kai
  email: zhangkai@upc.edu.cn
  organization: Department of Reservoir Engineering, China University of Petroleum, Qingdao, Shandong, China
– sequence: 4
  givenname: Xiuqing
  surname: Zhang
  fullname: Zhang, Xiuqing
  email: 2233737504@qq.com
  organization: Department of Reservoir Engineering, China University of Petroleum, Qingdao, Shandong, China
– sequence: 5
  givenname: Zhixue
  surname: Sun
  fullname: Sun, Zhixue
  email: upcszx@upc.edu.cn
  organization: Department of Reservoir Engineering, China University of Petroleum, Qingdao, Shandong, China
– sequence: 6
  givenname: Hao
  surname: Zhang
  fullname: Zhang, Hao
  email: zhlongma008@sina.com
  organization: Department of Reservoir Engineering, China University of Petroleum, Qingdao, Shandong, China
– sequence: 7
  givenname: Miguel Tome
  surname: Chipecane
  fullname: Chipecane, Miguel Tome
  email: migueltomechipecane@gmail.com
  organization: Department of Reservoir Engineering, China University of Petroleum, Qingdao, Shandong, China
– sequence: 8
  givenname: Jun
  surname: Yao
  fullname: Yao, Jun
  email: yaojunhdpu@126.com
  organization: Department of Reservoir Engineering, China University of Petroleum, Qingdao, Shandong, China
BookMark eNp9kE1LAzEQhoNUsH78Ab0EPG9NstkkPdZiVVD0oAhelmQ7qynpZs2mlfrrjdviwYMEkoG8zwzzHKJB4xtA6JSSEaVkfPE0e359HTFC1YgpySgr9tCQjjnNCMn5INVE5JmQRBygw65bEEJ5QdUQfU69byHoaNeAJyHa2lZWO3wJgKfe-WaDJ-7NBxvfl_gl3fh-5aJtHeBH365cAn3T4doHfNtECOvE9glvFlD1XR_aaJf2q0_ix-CNg2V3jPZr7To42b1H6Hl29TS9ye4erm-nk7usYuMiZtwozfM5o5IZrWspNJFSKAO6MOnIec30XApmBFM8N5XgFWEgaqNyVUhi8iN0vu3bBv-xgi6WC78KTRpZMpZ8MU4VSym2TVXBd12AumyDXeqwKSkpfwSXveDyR3C5E5wg9QeqbOy3jEFb9z96tkUtAPzOUjz98nH-DV-Jjdc
CODEN IEFSEV
CitedBy_id crossref_primary_10_1007_s00500_024_09893_8
crossref_primary_10_1007_s40747_022_00670_4
crossref_primary_10_3390_electronics13173579
crossref_primary_10_2118_201237_PA
crossref_primary_10_1016_j_resourpol_2019_101470
crossref_primary_10_1109_TEVC_2024_3418858
crossref_primary_10_4018_IJAMC_350330
crossref_primary_10_1016_j_neucom_2020_12_022
crossref_primary_10_1016_j_ins_2021_11_027
crossref_primary_10_2118_201229_PA
crossref_primary_10_3390_separations9120405
crossref_primary_10_1155_2021_6455592
crossref_primary_10_1109_TEVC_2022_3193294
crossref_primary_10_1109_TASE_2022_3148459
crossref_primary_10_1155_2021_4329219
crossref_primary_10_1049_trit_2019_0099
crossref_primary_10_1109_TEVC_2020_2975381
crossref_primary_10_1016_j_ins_2024_121690
crossref_primary_10_3390_en14165216
crossref_primary_10_1016_j_petrol_2021_108900
crossref_primary_10_1016_j_engappai_2023_106694
crossref_primary_10_3390_en12040709
crossref_primary_10_2118_212870_PA
crossref_primary_10_2118_205024_PA
crossref_primary_10_1016_j_petrol_2021_109278
crossref_primary_10_2118_206755_PA
crossref_primary_10_1109_TCYB_2020_3015756
crossref_primary_10_1016_j_petrol_2020_107409
crossref_primary_10_1016_j_ins_2020_06_045
crossref_primary_10_1007_s10479_021_03998_1
crossref_primary_10_1016_j_knosys_2023_111019
crossref_primary_10_1109_TCYB_2020_3036393
crossref_primary_10_1002_cpe_8221
crossref_primary_10_1016_j_petrol_2020_107441
crossref_primary_10_3390_biomimetics9020117
crossref_primary_10_1016_j_cie_2020_106338
crossref_primary_10_1007_s10462_021_10042_y
crossref_primary_10_1016_j_swevo_2024_101749
crossref_primary_10_1016_j_asoc_2021_108353
crossref_primary_10_3390_app131810247
crossref_primary_10_1109_TEVC_2024_3365814
crossref_primary_10_1109_TNSM_2022_3224158
crossref_primary_10_1016_j_petrol_2019_106633
crossref_primary_10_2118_205340_PA
crossref_primary_10_1002_cjce_24158
crossref_primary_10_1016_j_ins_2023_119173
crossref_primary_10_1109_ACCESS_2019_2949746
Cites_doi 10.1109/TEVC.2016.2592185
10.1007/s10898-007-9149-x
10.1016/j.jcss.2013.02.004
10.1007/978-3-540-31880-4_5
10.1109/ICRA.2015.7140036
10.1023/A:1008349927281
10.1016/j.asoc.2007.05.007
10.1007/978-3-540-31880-4_32
10.1109/TFUZZ.2018.2826479
10.1109/TSTE.2017.2723907
10.1109/CICED.2012.6508676
10.1016/j.ins.2010.07.015
10.1109/CEC.2005.1554719
10.1007/BF03186528
10.1142/S0218348X18400091
10.1109/TSM.2012.2200266
10.1016/j.amc.2007.04.036
10.1007/s10700-015-9219-3
10.1016/j.jfranklin.2015.01.021
10.1109/TSMCB.2012.2209115
10.1016/j.cma.2008.11.019
10.1016/j.physa.2015.02.060
10.1016/j.jngse.2017.03.002
10.1007/s00500-018-3281-z
10.1016/j.compchemeng.2018.03.006
10.1016/j.fss.2009.06.014
10.1109/WSC.2008.4736078
10.1016/j.asoc.2016.07.036
10.1007/s10898-016-0428-2
10.1007/s10596-017-9626-3
10.1080/00207721.2011.555011
10.1109/TEVC.2007.892759
10.1007/s11276-012-0438-z
10.1109/CEC.2016.7744133
10.1016/S0165-0114(98)00407-2
10.1109/TCYB.2015.2490669
10.1007/s10462-012-9328-0
10.1007/s10462-009-9127-4
10.1016/j.ijepes.2011.06.026
10.1016/j.petrol.2017.01.015
10.1016/j.swevo.2011.08.001
10.1016/j.knosys.2017.07.024
10.1002/int.20128
10.1007/s10589-014-9644-1
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2018.2872125
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0034
EndPage 1065
ExternalDocumentID 10_1109_TFUZZ_2018_2872125
8472149
Genre orig-research
GrantInformation_xml – fundername: The Natural Science Foundation of Shan Dong Province
  grantid: JQ201808; ZR2015EL014
– fundername: China Important National Science & Technology Specific Projects
  grantid: 2016ZX05025001-006
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 18CX02097A; 17CX05002A
– fundername: National Natural Science Foundation of China
  grantid: 51722406; 61573018; 51874335
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-4b8a43d2172baaf76a07768bea5b5b57df2ad762b62843bc64c02e6fb838570b3
IEDL.DBID RIE
ISICitedReferencesCount 98
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470836800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Sun Nov 09 06:36:50 EST 2025
Tue Nov 18 22:28:58 EST 2025
Sat Nov 29 03:12:37 EST 2025
Wed Aug 27 02:46:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-4b8a43d2172baaf76a07768bea5b5b57df2ad762b62843bc64c02e6fb838570b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6691-6762
PQID 2220124182
PQPubID 85428
PageCount 14
ParticipantIDs crossref_primary_10_1109_TFUZZ_2018_2872125
proquest_journals_2220124182
ieee_primary_8472149
crossref_citationtrail_10_1109_TFUZZ_2018_2872125
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref11
karaboga (ref37) 2005
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref48
ref44
ref43
ref49
ref8
zhu (ref12) 2009; 37
ref9
ref4
ref3
ref6
ref5
xu (ref7) 2016; 56
ref40
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
yan (ref45) 2013; 19
sun (ref47) 2013; 22
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
deb (ref41) 2001
fonseca (ref10) 1993
xu (ref42) 2008; 19
References_xml – ident: ref20
  doi: 10.1109/TEVC.2016.2592185
– ident: ref38
  doi: 10.1007/s10898-007-9149-x
– year: 2001
  ident: ref41
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
– ident: ref31
  doi: 10.1016/j.jcss.2013.02.004
– ident: ref46
  doi: 10.1007/978-3-540-31880-4_5
– ident: ref21
  doi: 10.1109/ICRA.2015.7140036
– ident: ref17
  doi: 10.1023/A:1008349927281
– ident: ref27
  doi: 10.1016/j.asoc.2007.05.007
– ident: ref28
  doi: 10.1007/978-3-540-31880-4_32
– volume: 37
  start-page: 1695
  year: 2009
  ident: ref12
  article-title: Solution to optimal portfolio problem based on semi-variance model
  publication-title: J TongJi Univ
– ident: ref9
  doi: 10.1109/TFUZZ.2018.2826479
– ident: ref25
  doi: 10.1109/TSTE.2017.2723907
– ident: ref32
  doi: 10.1109/CICED.2012.6508676
– ident: ref51
  doi: 10.1016/j.ins.2010.07.015
– ident: ref4
  doi: 10.1109/CEC.2005.1554719
– ident: ref22
  doi: 10.1007/BF03186528
– ident: ref6
  doi: 10.1142/S0218348X18400091
– ident: ref19
  doi: 10.1109/TSM.2012.2200266
– ident: ref11
  doi: 10.1016/j.amc.2007.04.036
– ident: ref24
  doi: 10.1007/s10700-015-9219-3
– ident: ref3
  doi: 10.1016/j.jfranklin.2015.01.021
– ident: ref35
  doi: 10.1109/TSMCB.2012.2209115
– ident: ref2
  doi: 10.1016/j.cma.2008.11.019
– ident: ref14
  doi: 10.1016/j.physa.2015.02.060
– ident: ref1
  doi: 10.1016/j.jngse.2017.03.002
– ident: ref15
  doi: 10.1007/s00500-018-3281-z
– ident: ref5
  doi: 10.1016/j.compchemeng.2018.03.006
– ident: ref8
  doi: 10.1016/j.fss.2009.06.014
– ident: ref18
  doi: 10.1109/WSC.2008.4736078
– volume: 56
  start-page: 684
  year: 2016
  ident: ref7
  article-title: Design optimization of resource combination for collaborative logistics network under uncertainty
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.07.036
– ident: ref30
  doi: 10.1007/s10898-016-0428-2
– ident: ref40
  doi: 10.1007/s10596-017-9626-3
– ident: ref13
  doi: 10.1080/00207721.2011.555011
– volume: 19
  start-page: 2528
  year: 2013
  ident: ref45
  article-title: Melting and casting scheduling optimization in copper strip industry using MOABC/D approach
  publication-title: Comput Integr Manuf Syst
– ident: ref44
  doi: 10.1109/TEVC.2007.892759
– ident: ref34
  doi: 10.1007/s11276-012-0438-z
– ident: ref48
  doi: 10.1109/CEC.2016.7744133
– ident: ref23
  doi: 10.1016/S0165-0114(98)00407-2
– ident: ref36
  doi: 10.1109/TCYB.2015.2490669
– ident: ref39
  doi: 10.1007/s10462-012-9328-0
– start-page: 416
  year: 1993
  ident: ref10
  article-title: Genetic algorithms for multiobjective optimization: Formulation discussion and generalization
  publication-title: Proc 5th Int Conf Genetic Algorithms
– ident: ref26
  doi: 10.1007/s10462-009-9127-4
– volume: 19
  start-page: 154
  year: 2008
  ident: ref42
  article-title: A new ranking approach for interval numbers in uncertain multiple-attribute decision making problems
  publication-title: Statist Decis
– ident: ref50
  doi: 10.1016/j.ijepes.2011.06.026
– ident: ref49
  doi: 10.1016/j.petrol.2017.01.015
– year: 2005
  ident: ref37
  article-title: An idea based on honey bee swarm for numerical optimization
– volume: 22
  start-page: 269
  year: 2013
  ident: ref47
  article-title: Solving interval multi-objective optimization problems using evo- lutionary algorithms with lower limit of possibility degree
  publication-title: Chin J Electron
– ident: ref33
  doi: 10.1016/j.swevo.2011.08.001
– ident: ref43
  doi: 10.1016/j.knosys.2017.07.024
– ident: ref29
  doi: 10.1002/int.20128
– ident: ref16
  doi: 10.1007/s10589-014-9644-1
SSID ssj0014518
Score 2.5684614
Snippet In practical engineering optimization problems (such as risk assessments), the parameters of the objective functions can be intervals because of noise and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1052
SubjectTerms Algorithms
Archive search
artificial bee colony
cooperative populations
Credibility
Evolutionary algorithms
interval multiobjective optimization
Intervals
Linear programming
Mathematical programming
Multiple objective analysis
Optimization
Optimization methods
Pareto optimum
Particle swarm optimization
Populations
Search algorithms
Sociology
Statistics
Swarm intelligence
uncertain multicriteria decision-making
Title Cooperative Artificial Bee Colony Algorithm With Multiple Populations for Interval Multiobjective Optimization Problems
URI https://ieeexplore.ieee.org/document/8472149
https://www.proquest.com/docview/2220124182
Volume 27
WOSCitedRecordID wos000470836800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH5qJw7jwEYHWmFDPnCDtGni2MlxVKs4wOihFVUvke3YwLQlU9tt2n-_5x-JQENIKJKVw3MU6bM_P9vvfQ_gPU9ZwSWNI4PcF1GjaCQFjmVTcaNkJRJjnIjrF35xka9WxbwHH7tcGK21Cz7TI_vq7vKrRt3ao7IxMmmCHn0f-pwzn6vV3RjQbOLT3lgaMR6zNkEmLsaL2XK9tlFc-Qj3B8jV2R-LkKuq8oSK3foyO_i_PzuEF8GPJGce-JfQ0_UADtoaDSRM2QE8_01wcAD71rf00sxHcD9tmhvtlb_dh7yYBPmkNZkiJ9YP5OzqR7P5tft5Tb5jS76G6EMy78p-bQl6vcSdK-KY9RaNvPQ0Sr4hIV2HTE8y97Vrtq9gOTtfTD9HoQ5DpJIi20VU5oKmlS1lJYUwnAmrAZRLLTKJD69MIiokVckQ71QqRlWcaGZknlr5fJm-hr26qfUxkJSqisdG0ExJKuJCylRMcl3EJhOZomoIkxaYUgWRclsr46p0m5W4KB2YpQWzDGAO4UPX58ZLdPzT-sjC11kG5IZw0uJfhlm8LdF3wvWb4hbszd97vYV9tCh8AOQJ7O02t_oUnqk7hHLzzg3QR0-t5nI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xWAn2ALuF1ZbX-sCNDbiJ8zpCRQWilB6KQFwi27F5CBrUlkX8e8aPRiDQSiiSlcM4ivTZn8f2zDcA22mU5KlgNNDIfQHTkgWC41jWZaqlKHmotRVx7aa9XnZ5mfdn4G-dC6OUssFnate82rv8spJP5qhsD5k0RI9-FuZjxkLqsrXqOwMWt1ziWxIFSUqTaYoMzfcGnfOrKxPHle3iDgHZOn63DNm6Kh_I2K4wneWv_dsPWPKeJNl30P-EGTVswPK0SgPxk7YB399IDjZg0XiXTpx5BZ7bVfWonPa3_ZCTkyAHSpE2suLwhezfX1ej28nNA7nAlpz6-EPSrwt_jQn6vcSeLOKodRaVuHNESs6Qkh58rifpu-o141U47xwO2keBr8QQyDCPJwETGWdRaYpZCc51mnCjApQJxWOBT1rqkJdIqyJBxCMhEyZpqBItssgI6IvoF8wNq6H6DSRiskyp5iyWgnGaCxHxVqZyqmMeSyab0JoCU0gvU26qZdwXdrtC88KCWRgwCw9mE3bqPo9OpOO_1isGvtrSI9eEjSn-hZ_H4wK9J1zBGW7C1j7v9QcWjgan3aJ73DtZh0W0zl045AbMTUZPahO-yX8I62jLDtZXbXrpuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperative+Artificial+Bee+Colony+Algorithm+With+Multiple+Populations+for+Interval+Multiobjective+Optimization+Problems&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Zhang%2C+Liming&rft.au=Wang%2C+Saisai&rft.au=Zhang%2C+Kai&rft.au=Zhang%2C+Xiuqing&rft.date=2019-05-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=27&rft.issue=5&rft.spage=1052&rft.epage=1065&rft_id=info:doi/10.1109%2FTFUZZ.2018.2872125&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2018_2872125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon