Cooperative Artificial Bee Colony Algorithm With Multiple Populations for Interval Multiobjective Optimization Problems
In practical engineering optimization problems (such as risk assessments), the parameters of the objective functions can be intervals because of noise and uncertainty; however, such problems cannot be solved by traditional multiobjective optimization methods. Yet, very little study has addressed int...
Uloženo v:
| Vydáno v: | IEEE transactions on fuzzy systems Ročník 27; číslo 5; s. 1052 - 1065 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1063-6706, 1941-0034 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In practical engineering optimization problems (such as risk assessments), the parameters of the objective functions can be intervals because of noise and uncertainty; however, such problems cannot be solved by traditional multiobjective optimization methods. Yet, very little study has addressed interval multiobjective optimization methods compared to traditional multiobjective optimization methods. Therefore, a novel interval multiobjective optimization method called the Interval Cooperative Multiobjective Artificial Bee Colony Algorithm (ICMOABC) based on multiple populations for multiple objectives and interval credibility is proposed. Interval credibility is selected as the interval dominant method. Interval credibility is easy to combine with multiobjective optimization methods because it can describe the mean and width of intervals without increasing the dimension of the objective functions. The proposed algorithm has M single-objective optimization subpopulations updated by artificial bee colony algorithm, meaning it uses evolutionary resources more efficiently. In order to bring in diversity, the elitist learning strategy is used in the archive. The results of ICMOABC on various benchmark problems sets with different characteristics demonstrate its superior performance compared to some state-of-the-art algorithms. |
|---|---|
| AbstractList | In practical engineering optimization problems (such as risk assessments), the parameters of the objective functions can be intervals because of noise and uncertainty; however, such problems cannot be solved by traditional multiobjective optimization methods. Yet, very little study has addressed interval multiobjective optimization methods compared to traditional multiobjective optimization methods. Therefore, a novel interval multiobjective optimization method called the Interval Cooperative Multiobjective Artificial Bee Colony Algorithm (ICMOABC) based on multiple populations for multiple objectives and interval credibility is proposed. Interval credibility is selected as the interval dominant method. Interval credibility is easy to combine with multiobjective optimization methods because it can describe the mean and width of intervals without increasing the dimension of the objective functions. The proposed algorithm has M single-objective optimization subpopulations updated by artificial bee colony algorithm, meaning it uses evolutionary resources more efficiently. In order to bring in diversity, the elitist learning strategy is used in the archive. The results of ICMOABC on various benchmark problems sets with different characteristics demonstrate its superior performance compared to some state-of-the-art algorithms. |
| Author | Zhang, Xiuqing Zhang, Liming Yao, Jun Wang, Saisai Sun, Zhixue Zhang, Hao Chipecane, Miguel Tome Zhang, Kai |
| Author_xml | – sequence: 1 givenname: Liming surname: Zhang fullname: Zhang, Liming email: zhangliming@upc.edu.cn organization: Department of Oil Extraction Engineering, China University of Petroleum, Qingdao, Shandong, China – sequence: 2 givenname: Saisai surname: Wang fullname: Wang, Saisai email: z16020143@s.upc.edu.cn organization: Department of Reservoir Engineering, China University of Petroleum, Qingdao, Shandong, China – sequence: 3 givenname: Kai orcidid: 0000-0002-6691-6762 surname: Zhang fullname: Zhang, Kai email: zhangkai@upc.edu.cn organization: Department of Reservoir Engineering, China University of Petroleum, Qingdao, Shandong, China – sequence: 4 givenname: Xiuqing surname: Zhang fullname: Zhang, Xiuqing email: 2233737504@qq.com organization: Department of Reservoir Engineering, China University of Petroleum, Qingdao, Shandong, China – sequence: 5 givenname: Zhixue surname: Sun fullname: Sun, Zhixue email: upcszx@upc.edu.cn organization: Department of Reservoir Engineering, China University of Petroleum, Qingdao, Shandong, China – sequence: 6 givenname: Hao surname: Zhang fullname: Zhang, Hao email: zhlongma008@sina.com organization: Department of Reservoir Engineering, China University of Petroleum, Qingdao, Shandong, China – sequence: 7 givenname: Miguel Tome surname: Chipecane fullname: Chipecane, Miguel Tome email: migueltomechipecane@gmail.com organization: Department of Reservoir Engineering, China University of Petroleum, Qingdao, Shandong, China – sequence: 8 givenname: Jun surname: Yao fullname: Yao, Jun email: yaojunhdpu@126.com organization: Department of Reservoir Engineering, China University of Petroleum, Qingdao, Shandong, China |
| BookMark | eNp9kE1LAzEQhoNUsH78Ab0EPG9NstkkPdZiVVD0oAhelmQ7qynpZs2mlfrrjdviwYMEkoG8zwzzHKJB4xtA6JSSEaVkfPE0e359HTFC1YgpySgr9tCQjjnNCMn5INVE5JmQRBygw65bEEJ5QdUQfU69byHoaNeAJyHa2lZWO3wJgKfe-WaDJ-7NBxvfl_gl3fh-5aJtHeBH365cAn3T4doHfNtECOvE9glvFlD1XR_aaJf2q0_ix-CNg2V3jPZr7To42b1H6Hl29TS9ye4erm-nk7usYuMiZtwozfM5o5IZrWspNJFSKAO6MOnIec30XApmBFM8N5XgFWEgaqNyVUhi8iN0vu3bBv-xgi6WC78KTRpZMpZ8MU4VSym2TVXBd12AumyDXeqwKSkpfwSXveDyR3C5E5wg9QeqbOy3jEFb9z96tkUtAPzOUjz98nH-DV-Jjdc |
| CODEN | IEFSEV |
| CitedBy_id | crossref_primary_10_1007_s00500_024_09893_8 crossref_primary_10_1007_s40747_022_00670_4 crossref_primary_10_3390_electronics13173579 crossref_primary_10_2118_201237_PA crossref_primary_10_1016_j_resourpol_2019_101470 crossref_primary_10_1109_TEVC_2024_3418858 crossref_primary_10_4018_IJAMC_350330 crossref_primary_10_1016_j_neucom_2020_12_022 crossref_primary_10_1016_j_ins_2021_11_027 crossref_primary_10_2118_201229_PA crossref_primary_10_3390_separations9120405 crossref_primary_10_1155_2021_6455592 crossref_primary_10_1109_TEVC_2022_3193294 crossref_primary_10_1109_TASE_2022_3148459 crossref_primary_10_1155_2021_4329219 crossref_primary_10_1049_trit_2019_0099 crossref_primary_10_1109_TEVC_2020_2975381 crossref_primary_10_1016_j_ins_2024_121690 crossref_primary_10_3390_en14165216 crossref_primary_10_1016_j_petrol_2021_108900 crossref_primary_10_1016_j_engappai_2023_106694 crossref_primary_10_3390_en12040709 crossref_primary_10_2118_212870_PA crossref_primary_10_2118_205024_PA crossref_primary_10_1016_j_petrol_2021_109278 crossref_primary_10_2118_206755_PA crossref_primary_10_1109_TCYB_2020_3015756 crossref_primary_10_1016_j_petrol_2020_107409 crossref_primary_10_1016_j_ins_2020_06_045 crossref_primary_10_1007_s10479_021_03998_1 crossref_primary_10_1016_j_knosys_2023_111019 crossref_primary_10_1109_TCYB_2020_3036393 crossref_primary_10_1002_cpe_8221 crossref_primary_10_1016_j_petrol_2020_107441 crossref_primary_10_3390_biomimetics9020117 crossref_primary_10_1016_j_cie_2020_106338 crossref_primary_10_1007_s10462_021_10042_y crossref_primary_10_1016_j_swevo_2024_101749 crossref_primary_10_1016_j_asoc_2021_108353 crossref_primary_10_3390_app131810247 crossref_primary_10_1109_TEVC_2024_3365814 crossref_primary_10_1109_TNSM_2022_3224158 crossref_primary_10_1016_j_petrol_2019_106633 crossref_primary_10_2118_205340_PA crossref_primary_10_1002_cjce_24158 crossref_primary_10_1016_j_ins_2023_119173 crossref_primary_10_1109_ACCESS_2019_2949746 |
| Cites_doi | 10.1109/TEVC.2016.2592185 10.1007/s10898-007-9149-x 10.1016/j.jcss.2013.02.004 10.1007/978-3-540-31880-4_5 10.1109/ICRA.2015.7140036 10.1023/A:1008349927281 10.1016/j.asoc.2007.05.007 10.1007/978-3-540-31880-4_32 10.1109/TFUZZ.2018.2826479 10.1109/TSTE.2017.2723907 10.1109/CICED.2012.6508676 10.1016/j.ins.2010.07.015 10.1109/CEC.2005.1554719 10.1007/BF03186528 10.1142/S0218348X18400091 10.1109/TSM.2012.2200266 10.1016/j.amc.2007.04.036 10.1007/s10700-015-9219-3 10.1016/j.jfranklin.2015.01.021 10.1109/TSMCB.2012.2209115 10.1016/j.cma.2008.11.019 10.1016/j.physa.2015.02.060 10.1016/j.jngse.2017.03.002 10.1007/s00500-018-3281-z 10.1016/j.compchemeng.2018.03.006 10.1016/j.fss.2009.06.014 10.1109/WSC.2008.4736078 10.1016/j.asoc.2016.07.036 10.1007/s10898-016-0428-2 10.1007/s10596-017-9626-3 10.1080/00207721.2011.555011 10.1109/TEVC.2007.892759 10.1007/s11276-012-0438-z 10.1109/CEC.2016.7744133 10.1016/S0165-0114(98)00407-2 10.1109/TCYB.2015.2490669 10.1007/s10462-012-9328-0 10.1007/s10462-009-9127-4 10.1016/j.ijepes.2011.06.026 10.1016/j.petrol.2017.01.015 10.1016/j.swevo.2011.08.001 10.1016/j.knosys.2017.07.024 10.1002/int.20128 10.1007/s10589-014-9644-1 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TFUZZ.2018.2872125 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Computer Science |
| EISSN | 1941-0034 |
| EndPage | 1065 |
| ExternalDocumentID | 10_1109_TFUZZ_2018_2872125 8472149 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: The Natural Science Foundation of Shan Dong Province grantid: JQ201808; ZR2015EL014 – fundername: China Important National Science & Technology Specific Projects grantid: 2016ZX05025001-006 – fundername: Fundamental Research Funds for the Central Universities grantid: 18CX02097A; 17CX05002A – fundername: National Natural Science Foundation of China grantid: 51722406; 61573018; 51874335 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c295t-4b8a43d2172baaf76a07768bea5b5b57df2ad762b62843bc64c02e6fb838570b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 98 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470836800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6706 |
| IngestDate | Sun Nov 09 06:36:50 EST 2025 Tue Nov 18 22:28:58 EST 2025 Sat Nov 29 03:12:37 EST 2025 Wed Aug 27 02:46:59 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-4b8a43d2172baaf76a07768bea5b5b57df2ad762b62843bc64c02e6fb838570b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6691-6762 |
| PQID | 2220124182 |
| PQPubID | 85428 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TFUZZ_2018_2872125 proquest_journals_2220124182 ieee_primary_8472149 crossref_citationtrail_10_1109_TFUZZ_2018_2872125 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-01 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on fuzzy systems |
| PublicationTitleAbbrev | TFUZZ |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref15 ref14 ref11 karaboga (ref37) 2005 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref48 ref44 ref43 ref49 ref8 zhu (ref12) 2009; 37 ref9 ref4 ref3 ref6 ref5 xu (ref7) 2016; 56 ref40 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 yan (ref45) 2013; 19 sun (ref47) 2013; 22 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 deb (ref41) 2001 fonseca (ref10) 1993 xu (ref42) 2008; 19 |
| References_xml | – ident: ref20 doi: 10.1109/TEVC.2016.2592185 – ident: ref38 doi: 10.1007/s10898-007-9149-x – year: 2001 ident: ref41 publication-title: Multi-Objective Optimization Using Evolutionary Algorithms – ident: ref31 doi: 10.1016/j.jcss.2013.02.004 – ident: ref46 doi: 10.1007/978-3-540-31880-4_5 – ident: ref21 doi: 10.1109/ICRA.2015.7140036 – ident: ref17 doi: 10.1023/A:1008349927281 – ident: ref27 doi: 10.1016/j.asoc.2007.05.007 – ident: ref28 doi: 10.1007/978-3-540-31880-4_32 – volume: 37 start-page: 1695 year: 2009 ident: ref12 article-title: Solution to optimal portfolio problem based on semi-variance model publication-title: J TongJi Univ – ident: ref9 doi: 10.1109/TFUZZ.2018.2826479 – ident: ref25 doi: 10.1109/TSTE.2017.2723907 – ident: ref32 doi: 10.1109/CICED.2012.6508676 – ident: ref51 doi: 10.1016/j.ins.2010.07.015 – ident: ref4 doi: 10.1109/CEC.2005.1554719 – ident: ref22 doi: 10.1007/BF03186528 – ident: ref6 doi: 10.1142/S0218348X18400091 – ident: ref19 doi: 10.1109/TSM.2012.2200266 – ident: ref11 doi: 10.1016/j.amc.2007.04.036 – ident: ref24 doi: 10.1007/s10700-015-9219-3 – ident: ref3 doi: 10.1016/j.jfranklin.2015.01.021 – ident: ref35 doi: 10.1109/TSMCB.2012.2209115 – ident: ref2 doi: 10.1016/j.cma.2008.11.019 – ident: ref14 doi: 10.1016/j.physa.2015.02.060 – ident: ref1 doi: 10.1016/j.jngse.2017.03.002 – ident: ref15 doi: 10.1007/s00500-018-3281-z – ident: ref5 doi: 10.1016/j.compchemeng.2018.03.006 – ident: ref8 doi: 10.1016/j.fss.2009.06.014 – ident: ref18 doi: 10.1109/WSC.2008.4736078 – volume: 56 start-page: 684 year: 2016 ident: ref7 article-title: Design optimization of resource combination for collaborative logistics network under uncertainty publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.07.036 – ident: ref30 doi: 10.1007/s10898-016-0428-2 – ident: ref40 doi: 10.1007/s10596-017-9626-3 – ident: ref13 doi: 10.1080/00207721.2011.555011 – volume: 19 start-page: 2528 year: 2013 ident: ref45 article-title: Melting and casting scheduling optimization in copper strip industry using MOABC/D approach publication-title: Comput Integr Manuf Syst – ident: ref44 doi: 10.1109/TEVC.2007.892759 – ident: ref34 doi: 10.1007/s11276-012-0438-z – ident: ref48 doi: 10.1109/CEC.2016.7744133 – ident: ref23 doi: 10.1016/S0165-0114(98)00407-2 – ident: ref36 doi: 10.1109/TCYB.2015.2490669 – ident: ref39 doi: 10.1007/s10462-012-9328-0 – start-page: 416 year: 1993 ident: ref10 article-title: Genetic algorithms for multiobjective optimization: Formulation discussion and generalization publication-title: Proc 5th Int Conf Genetic Algorithms – ident: ref26 doi: 10.1007/s10462-009-9127-4 – volume: 19 start-page: 154 year: 2008 ident: ref42 article-title: A new ranking approach for interval numbers in uncertain multiple-attribute decision making problems publication-title: Statist Decis – ident: ref50 doi: 10.1016/j.ijepes.2011.06.026 – ident: ref49 doi: 10.1016/j.petrol.2017.01.015 – year: 2005 ident: ref37 article-title: An idea based on honey bee swarm for numerical optimization – volume: 22 start-page: 269 year: 2013 ident: ref47 article-title: Solving interval multi-objective optimization problems using evo- lutionary algorithms with lower limit of possibility degree publication-title: Chin J Electron – ident: ref33 doi: 10.1016/j.swevo.2011.08.001 – ident: ref43 doi: 10.1016/j.knosys.2017.07.024 – ident: ref29 doi: 10.1002/int.20128 – ident: ref16 doi: 10.1007/s10589-014-9644-1 |
| SSID | ssj0014518 |
| Score | 2.5684614 |
| Snippet | In practical engineering optimization problems (such as risk assessments), the parameters of the objective functions can be intervals because of noise and... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1052 |
| SubjectTerms | Algorithms Archive search artificial bee colony cooperative populations Credibility Evolutionary algorithms interval multiobjective optimization Intervals Linear programming Mathematical programming Multiple objective analysis Optimization Optimization methods Pareto optimum Particle swarm optimization Populations Search algorithms Sociology Statistics Swarm intelligence uncertain multicriteria decision-making |
| Title | Cooperative Artificial Bee Colony Algorithm With Multiple Populations for Interval Multiobjective Optimization Problems |
| URI | https://ieeexplore.ieee.org/document/8472149 https://www.proquest.com/docview/2220124182 |
| Volume | 27 |
| WOSCitedRecordID | wos000470836800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH5qJw7jwEYHWmFDPnCDtGni2MlxVKs4wOihFVUvke3YwLQlU9tt2n-_5x-JQENIKJKVw3MU6bM_P9vvfQ_gPU9ZwSWNI4PcF1GjaCQFjmVTcaNkJRJjnIjrF35xka9WxbwHH7tcGK21Cz7TI_vq7vKrRt3ao7IxMmmCHn0f-pwzn6vV3RjQbOLT3lgaMR6zNkEmLsaL2XK9tlFc-Qj3B8jV2R-LkKuq8oSK3foyO_i_PzuEF8GPJGce-JfQ0_UADtoaDSRM2QE8_01wcAD71rf00sxHcD9tmhvtlb_dh7yYBPmkNZkiJ9YP5OzqR7P5tft5Tb5jS76G6EMy78p-bQl6vcSdK-KY9RaNvPQ0Sr4hIV2HTE8y97Vrtq9gOTtfTD9HoQ5DpJIi20VU5oKmlS1lJYUwnAmrAZRLLTKJD69MIiokVckQ71QqRlWcaGZknlr5fJm-hr26qfUxkJSqisdG0ExJKuJCylRMcl3EJhOZomoIkxaYUgWRclsr46p0m5W4KB2YpQWzDGAO4UPX58ZLdPzT-sjC11kG5IZw0uJfhlm8LdF3wvWb4hbszd97vYV9tCh8AOQJ7O02t_oUnqk7hHLzzg3QR0-t5nI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xWAn2ALuF1ZbX-sCNDbiJ8zpCRQWilB6KQFwi27F5CBrUlkX8e8aPRiDQSiiSlcM4ivTZn8f2zDcA22mU5KlgNNDIfQHTkgWC41jWZaqlKHmotRVx7aa9XnZ5mfdn4G-dC6OUssFnate82rv8spJP5qhsD5k0RI9-FuZjxkLqsrXqOwMWt1ziWxIFSUqTaYoMzfcGnfOrKxPHle3iDgHZOn63DNm6Kh_I2K4wneWv_dsPWPKeJNl30P-EGTVswPK0SgPxk7YB399IDjZg0XiXTpx5BZ7bVfWonPa3_ZCTkyAHSpE2suLwhezfX1ej28nNA7nAlpz6-EPSrwt_jQn6vcSeLOKodRaVuHNESs6Qkh58rifpu-o141U47xwO2keBr8QQyDCPJwETGWdRaYpZCc51mnCjApQJxWOBT1rqkJdIqyJBxCMhEyZpqBItssgI6IvoF8wNq6H6DSRiskyp5iyWgnGaCxHxVqZyqmMeSyab0JoCU0gvU26qZdwXdrtC88KCWRgwCw9mE3bqPo9OpOO_1isGvtrSI9eEjSn-hZ_H4wK9J1zBGW7C1j7v9QcWjgan3aJ73DtZh0W0zl045AbMTUZPahO-yX8I62jLDtZXbXrpuQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperative+Artificial+Bee+Colony+Algorithm+With+Multiple+Populations+for+Interval+Multiobjective+Optimization+Problems&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Zhang%2C+Liming&rft.au=Wang%2C+Saisai&rft.au=Zhang%2C+Kai&rft.au=Zhang%2C+Xiuqing&rft.date=2019-05-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=27&rft.issue=5&rft.spage=1052&rft.epage=1065&rft_id=info:doi/10.1109%2FTFUZZ.2018.2872125&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2018_2872125 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |