A Low-Power Processor With Configurable Embedded Machine-Learning Accelerators for High-Order and Adaptive Analysis of Medical-Sensor Signals

Low-power sensing technologies have emerged for acquiring physiologically indicative patient signals. However, to enable devices with high clinical value, a critical requirement is the ability to analyze the signals to extract specific medical information. Yet given the complexities of the underlyin...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE journal of solid-state circuits Ročník 48; číslo 7; s. 1625 - 1637
Hlavní autori: Kyong Ho Lee, Verma, N.
Médium: Journal Article Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.07.2013
Institute of Electrical and Electronics Engineers
Predmet:
ISSN:0018-9200, 1558-173X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Low-power sensing technologies have emerged for acquiring physiologically indicative patient signals. However, to enable devices with high clinical value, a critical requirement is the ability to analyze the signals to extract specific medical information. Yet given the complexities of the underlying processes, signal analysis poses numerous challenges. Data-driven methods based on machine learning offer distinct solutions, but unfortunately the computations are not well supported by traditional DSP. This paper presents a custom processor that integrates a CPU with configurable accelerators for discriminative machine-learning functions. A support-vector-machine accelerator realizes various classification algorithms as well as various kernel functions and kernel formulations, enabling range of points within an accuracy-versus-energy and -memory trade space. An accelerator for embedded active learning enables prospective adaptation of the signal models by utilizing sensed data for patient-specific customization, while minimizing the effort from human experts. The prototype is implemented in 130-nm CMOS and operates from 1.2 V-0.55 V (0.7 V for SRAMs). Medical applications for EEG-based seizure detection and ECG-based cardiac-arrhythmia detection are demonstrated using clinical data, while consuming 273 μJ and 124 μJ per detection, respectively; this represents 62.4× and 144.7× energy reduction compared to an implementation based on the CPU. A patient-adaptive cardiac-arrhythmia detector is also demonstrated, reducing the analysis-effort required for model customization by 20 ×.
AbstractList Low-power sensing technologies have emerged for acquiring physiologically indicative patient signals. However, to enable devices with high clinical value, a critical requirement is the ability to analyze the signals to extract specific medical information. Yet given the complexities of the underlying processes, signal analysis poses numerous challenges. Data-driven methods based on machine learning offer distinct solutions, but unfortunately the computations are not well supported by traditional DSP. This paper presents a custom processor that integrates a CPU with configurable accelerators for discriminative machine-learning functions. A support-vector-machine accelerator realizes various classification algorithms as well as various kernel functions and kernel formulations, enabling range of points within an accuracy-versus-energy and -memory trade space. An accelerator for embedded active learning enables prospective adaptation of the signal models by utilizing sensed data for patient-specific customization, while minimizing the effort from human experts. The prototype is implemented in 130-nm CMOS and operates from 1.2 V-0.55 V (0.7 V for SRAMs). Medical applications for EEG-based seizure detection and ECG-based cardiac-arrhythmia detection are demonstrated using clinical data, while consuming 273 μJ and 124 μJ per detection, respectively; this represents 62.4× and 144.7× energy reduction compared to an implementation based on the CPU. A patient-adaptive cardiac-arrhythmia detector is also demonstrated, reducing the analysis-effort required for model customization by 20 ×.
Author Kyong Ho Lee
Verma, N.
Author_xml – sequence: 1
  surname: Kyong Ho Lee
  fullname: Kyong Ho Lee
  email: kyonglee@princeton.edu
  organization: Electr. Eng. Dept., Princeton Univ., Princeton, NJ, USA
– sequence: 2
  givenname: N.
  surname: Verma
  fullname: Verma, N.
  email: nverma@princeton.edu
  organization: Electr. Eng. Dept., Princeton Univ., Princeton, NJ, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27678022$$DView record in Pascal Francis
BookMark eNp9kE1rGzEQhkVIIU7aHxB60aVHufrYD-1xMWnT4pCAW5rbMiuNbJWNZKRtQ35E_3NlHHLIIadhmOeZGd5zchpiQEIuBV8KwbvP3zeb1VJyoZZS1krK5oQsRF1rJlp1f0oWnAvNOsn5GTnP-Xdpq0qLBfnX03V8ZHfxERO9S9FgzjHRX37e0VUMzm__JBgnpFcPI1qLlt6A2fmAbI2Qgg9b2huDEyaYY8rUFfnab3fsNtmyEYKlvYX97P8i7QNMT9lnGh29QesNTGyD4XBv47dlmN-Td64U_PBcL8jPL1c_Vtdsffv126pfMyO7emYVAGgNhmtlJDfYdsqIBlTtRiWaEawYXQE7AKux5bUapSqoUcI1nelqdUE-HffuIZcvXIJgfB72yT9Aehpk27SaS1k4ceRMijkndC-I4MMh9-GQ-3DIfXjOvTjtK8f4GWYfw5zAT2-aH4-mR8SXS03VqarW6j-_KpPm
CODEN IJSCBC
CitedBy_id crossref_primary_10_1109_ACCESS_2018_2866049
crossref_primary_10_1109_TED_2022_3214167
crossref_primary_10_1016_j_jmst_2024_12_078
crossref_primary_10_1038_s41598_022_09712_w
crossref_primary_10_1038_s41598_024_74681_1
crossref_primary_10_1109_JSSC_2019_2926649
crossref_primary_10_1109_TC_2022_3215898
crossref_primary_10_1007_s11235_023_01017_1
crossref_primary_10_3390_electronics11193204
crossref_primary_10_1109_TC_2017_2738642
crossref_primary_10_1109_JSSC_2017_2647923
crossref_primary_10_1109_JSSC_2021_3098732
crossref_primary_10_1109_TCSI_2019_2961643
crossref_primary_10_1109_LSSC_2020_3016924
crossref_primary_10_3390_jlpea7020016
crossref_primary_10_1109_TCSI_2018_2881508
crossref_primary_10_1109_TCSII_2014_2385211
crossref_primary_10_1109_TBCAS_2024_3456825
crossref_primary_10_1109_TBCAS_2023_3268502
crossref_primary_10_1109_MSSC_2017_2745798
crossref_primary_10_1038_s44306_024_00018_3
crossref_primary_10_3390_electronics9122138
crossref_primary_10_1016_j_ymssp_2019_106266
crossref_primary_10_1109_JIOT_2020_3030072
crossref_primary_10_1109_JSSC_2015_2482498
crossref_primary_10_1109_TBCAS_2021_3113665
crossref_primary_10_1109_JSSC_2018_2869579
crossref_primary_10_1016_j_compbiomed_2022_105458
crossref_primary_10_1109_ACCESS_2023_3289717
crossref_primary_10_1049_iet_cds_2017_0216
crossref_primary_10_1109_JETCAS_2018_2844733
crossref_primary_10_3390_s18113854
crossref_primary_10_1109_TAI_2020_3028321
crossref_primary_10_1016_j_mejo_2021_105022
crossref_primary_10_1109_TCSII_2017_2747596
crossref_primary_10_1109_TCSI_2017_2698019
crossref_primary_10_1016_j_artmed_2023_102692
crossref_primary_10_1109_JSSC_2024_3412220
crossref_primary_10_1109_JETCAS_2021_3128587
crossref_primary_10_1016_j_micpro_2020_103673
crossref_primary_10_1109_JSSC_2019_2954775
crossref_primary_10_1109_TBCAS_2022_3185584
crossref_primary_10_1109_TBCAS_2021_3120965
crossref_primary_10_3233_ICA_220687
crossref_primary_10_1109_ACCESS_2018_2870883
crossref_primary_10_1109_JSSC_2019_2892605
crossref_primary_10_1016_j_bspc_2020_101930
crossref_primary_10_1109_JSSC_2017_2787762
crossref_primary_10_1109_JSEN_2022_3183136
crossref_primary_10_1109_TC_2016_2610426
crossref_primary_10_1109_TMSCS_2018_2821154
crossref_primary_10_1109_TBCAS_2023_3251310
crossref_primary_10_1109_JSSC_2014_2359962
crossref_primary_10_1109_TVLSI_2016_2558842
crossref_primary_10_1016_j_nanoen_2024_109949
crossref_primary_10_1109_TBME_2019_2926104
crossref_primary_10_1109_TCSI_2019_2940642
crossref_primary_10_1016_j_compbiomed_2022_105366
crossref_primary_10_1109_JSSC_2019_2912304
crossref_primary_10_1109_TBCAS_2024_3481160
crossref_primary_10_1007_s11265_014_0931_y
crossref_primary_10_1109_TVLSI_2017_2754272
crossref_primary_10_1002_dac_5484
crossref_primary_10_1109_TCAD_2018_2871819
crossref_primary_10_1109_ACCESS_2020_3037017
crossref_primary_10_1109_TC_2016_2532861
crossref_primary_10_1016_j_comcom_2024_04_024
crossref_primary_10_1145_3369837
crossref_primary_10_1109_JSSC_2022_3218240
crossref_primary_10_1109_TBCAS_2019_2948301
crossref_primary_10_1109_ACCESS_2022_3230897
crossref_primary_10_1109_JETCAS_2017_2777784
crossref_primary_10_1109_JSSC_2024_3499914
crossref_primary_10_1109_TBCAS_2020_3004544
crossref_primary_10_1109_TBCAS_2021_3112756
crossref_primary_10_1109_JBHI_2016_2553368
crossref_primary_10_1109_TCSI_2016_2600498
crossref_primary_10_3390_electronics8111289
crossref_primary_10_1109_TBCAS_2015_2483618
crossref_primary_10_1109_TVLSI_2014_2342153
crossref_primary_10_1109_TBCAS_2020_3018465
crossref_primary_10_1109_TCSI_2017_2703880
crossref_primary_10_1109_TBCAS_2021_3092744
crossref_primary_10_1007_s10462_022_10213_5
crossref_primary_10_1016_j_mejo_2023_105969
crossref_primary_10_1109_TMSCS_2018_2864297
crossref_primary_10_1109_TBCAS_2014_2386891
crossref_primary_10_1038_s41467_020_18105_4
crossref_primary_10_1109_ACCESS_2019_2920006
crossref_primary_10_1109_JBHI_2019_2906400
Cites_doi 10.1109/JSSC.2011.2116410
10.1002/mds.10162
10.1109/ISSCC.2012.6177019
10.1038/nn.2973
10.1109/IEMBS.2009.5333790
10.1146/annurev-bioeng-071811-150018
10.1007/BF00116828
10.1016/j.neuroscience.2004.03.014
10.1109/ICASSP.2011.5946802
10.1109/JSSC.2010.2042245
10.1109/TBME.2005.844043
10.1145/1515747.1515767
10.3390/jlpea1010175
10.1109/JSSC.2007.908664
10.1145/1478786.1478840
10.1007/978-1-4757-2440-0
10.1109/TBME.2004.827359
10.3390/jlpea1010150
10.1109/JSSC.2007.894804
10.1161/01.CIR.101.23.e215
10.1109/72.80287
10.1109/ESSCIRC.2010.5619759
ContentType Journal Article
Conference Proceeding
Copyright 2014 INIST-CNRS
Copyright_xml – notice: 2014 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
DOI 10.1109/JSSC.2013.2253226
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Physics
EISSN 1558-173X
EndPage 1637
ExternalDocumentID 27678022
10_1109_JSSC_2013_2253226
6493458
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PZZ
RIA
RIE
RNS
TAE
TN5
UKR
VH1
AAYXX
CITATION
IQODW
RIG
XFK
ID FETCH-LOGICAL-c295t-4aaa88ac083c20ce793c16a35fb316bad1bf2959aad8e7053b2383cc31f69c953
IEDL.DBID RIE
ISICitedReferencesCount 138
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000320938600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9200
IngestDate Sun Oct 22 16:08:37 EDT 2023
Sat Nov 29 02:50:01 EST 2025
Tue Nov 18 20:45:57 EST 2025
Tue Aug 26 16:41:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Static random access memory
Prototype
Random access memory
support vector machine (SVM)
Information extraction
Support vector machine
Implementation
Learning
Prospective
Complementary MOS technology
machine learning (artificial intelligence)
Medical application
Discriminant analysis
Measurement sensor
Active learning (subject-specific adaptation)
Algorithm
Kernel method
medical signal processing
Learning (artificial intelligence)
Integrated circuit
Signal processing
Low-power electronics
Digital signal processor
Signal analysis
Artificial intelligence
Biomedical electronics
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MeetingName SPECIAL ISSUE ON THE 38TH EUROPEAN SOLID-STATE CIRCUITS CONFERENCE (ESSCIRC)
MergedId FETCHMERGED-LOGICAL-c295t-4aaa88ac083c20ce793c16a35fb316bad1bf2959aad8e7053b2383cc31f69c953
PageCount 13
ParticipantIDs crossref_primary_10_1109_JSSC_2013_2253226
pascalfrancis_primary_27678022
ieee_primary_6493458
crossref_citationtrail_10_1109_JSSC_2013_2253226
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle IEEE journal of solid-state circuits
PublicationTitleAbbrev JSSC
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
chae (ref15) 2008
ref12
denison (ref4) 2007; 42
ref14
chen (ref16) 2009
ref33
lee (ref18) 2012
ref32
ref10
ref2
ref1
goldberger (ref35) 2000; 101
ref17
ashouei (ref11) 2011
ref19
csavoy (ref6) 2009
balakrishnan (ref27) 2012; 22
dugdale (ref9) 2012
seok (ref31) 2011
brinker (ref30) 2003
ref24
ref23
ref25
ref20
ref22
ref21
jang (ref26) 2011
(ref34) 0
ref28
yazicioglu (ref3) 2007; 42
schapire (ref29) 1999
ref7
ref5
shoeb (ref8) 2010
References_xml – volume: 22
  start-page: 73
  year: 2012
  ident: ref27
  article-title: Scalable personalization of long-term physiological monitoring: Active learning methodologies for epileptic seizure onset detection
  publication-title: J Mach Learn Res
– ident: ref14
  doi: 10.1109/JSSC.2011.2116410
– ident: ref21
  doi: 10.1002/mds.10162
– ident: ref17
  doi: 10.1109/ISSCC.2012.6177019
– ident: ref1
  doi: 10.1038/nn.2973
– ident: ref12
  doi: 10.1109/IEMBS.2009.5333790
– start-page: 285
  year: 2012
  ident: ref18
  article-title: A 1.2?0.55 V general-purpose biomedical processor with configurable machine-learning accelerators for high-order, patient-adaptive monitoring
  publication-title: Proc ESSCIRC
– start-page: 146
  year: 2008
  ident: ref15
  article-title: A 128-channel 6 mW wireless neural recording IC with on-the-fly spike sorting and UWB transmitter
  publication-title: Proc IEEE Int Solid-State Circuits Conf Dig Tech Papers
– start-page: 4
  year: 2009
  ident: ref6
  article-title: Creating support circuits for the nervous system: Considerations for ?brain-machine? interfacing
  publication-title: Proc IEEE Symp VLSI Circuits
– year: 0
  ident: ref34
– year: 2010
  ident: ref8
  article-title: Application of machine learning to epileptic seizure detection
  publication-title: Proc Int Conf Mach Learn
– ident: ref2
  doi: 10.1146/annurev-bioeng-071811-150018
– ident: ref24
  doi: 10.1007/BF00116828
– ident: ref7
  doi: 10.1016/j.neuroscience.2004.03.014
– ident: ref23
  doi: 10.1109/ICASSP.2011.5946802
– ident: ref5
  doi: 10.1109/JSSC.2010.2042245
– year: 2012
  ident: ref9
  publication-title: Post Myocardial Infarction
– ident: ref22
  doi: 10.1109/TBME.2005.844043
– ident: ref28
  doi: 10.1145/1515747.1515767
– ident: ref13
  doi: 10.3390/jlpea1010175
– volume: 42
  start-page: 2934
  year: 2007
  ident: ref4
  article-title: A 2 <formula formulatype="inline"><tex Notation="TeX">$\mu$</tex> </formula> W 100 nV/rtHz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials
  publication-title: IEEE J Solid-State Circuits
  doi: 10.1109/JSSC.2007.908664
– ident: ref32
  doi: 10.1145/1478786.1478840
– ident: ref19
  doi: 10.1007/978-1-4757-2440-0
– start-page: 332
  year: 2011
  ident: ref11
  article-title: A voltage-scalable biomedical signal processor running ECG using 13 pJ/cycle at 1 MHz and 0.4 V
  publication-title: Proc IEEE Int Solid-State Circuits Conf Dig Tech Papers
– ident: ref33
  doi: 10.1109/TBME.2004.827359
– year: 1999
  ident: ref29
  article-title: A brief introduction to boosting
  publication-title: Proc 16th Int Joint Conf Artificial Intell
– ident: ref20
  doi: 10.3390/jlpea1010150
– volume: 42
  start-page: 1100
  year: 2007
  ident: ref3
  article-title: A 60 <formula formulatype="inline"><tex Notation="TeX">$\mu$</tex></formula> W 60 nV/<formula formulatype="inline"> <tex Notation="TeX">$\sqrt{\rm Hz}$</tex></formula> readout front-end for portable biopotential acquisition systems
  publication-title: IEEE J Solid-State Circuits
  doi: 10.1109/JSSC.2007.894804
– volume: 101
  start-page: 215e
  year: 2000
  ident: ref35
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– start-page: 2184
  year: 2011
  ident: ref26
  article-title: Scalable customization of atrial fibrillation detection in cardiac monitoring devices: Increasing detection accuracy through personalized monitoring in large patient populations
  publication-title: Proc IEEE Eng Med Biol Soc Conf
– ident: ref25
  doi: 10.1109/72.80287
– start-page: 1253
  year: 2009
  ident: ref16
  article-title: 128-channel spike sorting processor with a parallel-folding structure in 90 nm process
  publication-title: Proc ISCAS
– ident: ref10
  doi: 10.1109/ESSCIRC.2010.5619759
– start-page: 342
  year: 2011
  ident: ref31
  article-title: A 0.27 V 30 MHz 17.7 nJ/transform 1024-pt complex FFT core with super-pipelining
  publication-title: Proc IEEE Int Solid-State Circuits Conf Dig Tech Papers
– year: 2003
  ident: ref30
  article-title: Incorporating diversity in active learning with support vector machine
  publication-title: Proc Int Conf Mach Learn
SSID ssj0014481
Score 2.4912949
Snippet Low-power sensing technologies have emerged for acquiring physiologically indicative patient signals. However, to enable devices with high clinical value, a...
SourceID pascalfrancis
crossref
ieee
SourceType Index Database
Enrichment Source
Publisher
StartPage 1625
SubjectTerms Active learning (subject-specific adaptation)
Adaptation models
Applied sciences
biomedical electronics
Brain models
Computational modeling
Data models
Design. Technologies. Operation analysis. Testing
Electronics
Exact sciences and technology
General equipment and techniques
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Integrated circuits
Integrated circuits by function (including memories and processors)
Kernel
machine learning (artificial intelligence)
medical signal processing
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing
support vector machine (SVM)
Support vector machines
Title A Low-Power Processor With Configurable Embedded Machine-Learning Accelerators for High-Order and Adaptive Analysis of Medical-Sensor Signals
URI https://ieeexplore.ieee.org/document/6493458
Volume 48
WOSCitedRecordID wos000320938600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-173X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014481
  issn: 0018-9200
  databaseCode: RIE
  dateStart: 19660101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB2S0EN76Fdauv0IOvRUqsSyLcs6LiGhlDQNbEtzM9JI2iy067Af7a_of-5IVkwCpdCbwRIYP8nz5Jl5D-CtDQW2PhjeyrrmtRaO2xIDd5LIOBbG-ZAahc_U-Xl7eakvduD92AvjvU_FZ_4wXqZcvutxG3-VHTW1rmrZ7sKuUmro1RozBnTMGNzxBG1ggj5nMEWhjz7OZsexiKs6pMVLC7i5E4OSqUosiTRreithsLO4FWNOH_3f0z2Gh5lLsukA_hPY8cun8OCWwuA-_J6ys_4Xv4heaCw3BfQr9m2xuWKx2W8x365i8xQ7-WE9fYMc-5SqKz3PwqtzNkWk0JSy8WtGFJfF0hD-OUp2MrN0bOrMdfxmsht9E9YHlvM_fEanZJoyW8yjTvMz-Hp68uX4A88ODBxLLTe8Nsa0rUHiaVgW6Gkzo2hMJYOtRGONEzbQQG2Ma72i_WyJAVSIlQiNRi2r57C37Jf-BTBipthYKY0PRCJEaSurWlmERmnlMYgJFDeYdJjlyaNLxvcuHVMK3UUYuwhjl2GcwLtxyvWgzfGvwfsRsnFgRmsCB3eAH--XisI4EZyXf5_3Cu6XyRgjFu6-hr3NauvfwD38uVmsVwdpaf4B0dnjSQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VgkQ5lI9SsVCKD5wQbuMkTuLjqmpVYLtU2iJ6i-yxvazUbqr9gF_Bf2bspFErISRukWJHUd7Y85yZeQPw3vgEK-c1r2Se81wJy02KnltJZBwTbZ2PhcKjcjyuLi_V-QZ87GthnHMx-cwdhMsYy7cNrsOvssMiV1kuqwfwkB6cirZaq48Z0EGj7Y8naAkT-F0MUyTq8PNkchTSuLIDMl8y4eKeF4ptVUJSpF7Sd_FtQ4s7Xubk6f-93zPY7tgkG7bwP4cNN38BT-5oDO7A7yEbNb_4eeiGxrqygGbBvs9WP1go95tN14tQPsWOr42jXciys5hf6XgnvTplQ0RyTjEev2REcllIDuFfg2gn03PLhlbfhF2T3SqcsMazLgLEJ3ROpimT2TQoNb-EbyfHF0envOvBwDFVcsVzrXVVaSSmhmmCjpYzikJn0ptMFEZbYTwNVFrbypW0og1xgAwxE75QqGS2C5vzZu5eASNuioWRUjtPNEKkJjNlJRNflKp06MUAkltMauwEykOfjKs6HlQSVQcY6wBj3cE4gA_9lJtWneNfg3cCZP3ADq0B7N8Dvr-fluTIieK8_vu8d_D49OJsVI8-jb-8ga00tskIabx7sLlarN1beIQ_V7PlYj-a6R_IeOaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+journal+of+solid-state+circuits&rft.atitle=A+Low-Power+Processor+With+Configurable+Embedded+Machine-Learning+Accelerators+for+High-Order+and+Adaptive+Analysis+of+Medical-Sensor+Signals&rft.au=KYONG+HO+LEE&rft.au=VERMA%2C+Naveen&rft.date=2013-07-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0018-9200&rft.eissn=1558-173X&rft.volume=48&rft.issue=7&rft.spage=1625&rft.epage=1637&rft_id=info:doi/10.1109%2FJSSC.2013.2253226&rft.externalDBID=n%2Fa&rft.externalDocID=27678022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9200&client=summon