Self-Updatable Database System Based on Human Motion Assessment Framework
Recently, human motion-centric videos have been attracting attention in the field of computer vision. Observing and detecting human motion in intelligent surveillance camera systems is essential for understanding the intentions of target subjects. However, these videos have vast amounts of disparate...
Uloženo v:
| Vydáno v: | IEEE transactions on circuits and systems for video technology Ročník 32; číslo 10; s. 7160 - 7176 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1051-8215, 1558-2205 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recently, human motion-centric videos have been attracting attention in the field of computer vision. Observing and detecting human motion in intelligent surveillance camera systems is essential for understanding the intentions of target subjects. However, these videos have vast amounts of disparate and complex information, and hence they are difficult to process and label automatically. As a result, building and maintaining a database using motion-centric videos requires considerable labor in trimming and classifying the videos. Therefore, we propose a self-updatable motion database system based on a human motion assessment framework for evaluating complex human movements. The framework quantifies three primitive motion properties: stability, liveliness, and attention. This assessment highlights the semantics of human motion in the input video. The semantic motion sequence obtained after the motion assessment is compared with a similarity motion database to determine whether the database needs to be updated; for efficient comparison, we introduce a sequential autoencoder model with a long short-term memory neural network. The proposed system maintains the database within a surveillance camera system using a motion update algorithm; unseen motions in the database are updated using a camera-based surveillance system. In addition, this framework combines state-of-art action recognition methods to improve performance by up to 11% via the self-update of motion. |
|---|---|
| AbstractList | Recently, human motion-centric videos have been attracting attention in the field of computer vision. Observing and detecting human motion in intelligent surveillance camera systems is essential for understanding the intentions of target subjects. However, these videos have vast amounts of disparate and complex information, and hence they are difficult to process and label automatically. As a result, building and maintaining a database using motion-centric videos requires considerable labor in trimming and classifying the videos. Therefore, we propose a self-updatable motion database system based on a human motion assessment framework for evaluating complex human movements. The framework quantifies three primitive motion properties: stability, liveliness, and attention. This assessment highlights the semantics of human motion in the input video. The semantic motion sequence obtained after the motion assessment is compared with a similarity motion database to determine whether the database needs to be updated; for efficient comparison, we introduce a sequential autoencoder model with a long short-term memory neural network. The proposed system maintains the database within a surveillance camera system using a motion update algorithm; unseen motions in the database are updated using a camera-based surveillance system. In addition, this framework combines state-of-art action recognition methods to improve performance by up to 11% via the self-update of motion. |
| Author | Huh, Jungwoo Lee, Kyoungoh Kang, Jiwoo Park, Yeseung Lee, Sanghoon |
| Author_xml | – sequence: 1 givenname: Kyoungoh orcidid: 0000-0002-5273-0131 surname: Lee fullname: Lee, Kyoungoh email: longweek7@etri.re.kr organization: Electronics and Telecommunications Research Institute, Daejeon, South Korea – sequence: 2 givenname: Yeseung surname: Park fullname: Park, Yeseung email: pys940617@yonsei.ac.kr organization: Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea – sequence: 3 givenname: Jungwoo surname: Huh fullname: Huh, Jungwoo email: gjwjddn9@yonsei.ac.kr organization: Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea – sequence: 4 givenname: Jiwoo orcidid: 0000-0001-7622-0817 surname: Kang fullname: Kang, Jiwoo email: jwkang@sookmyung.ac.kr organization: Department of IT Engineering, Sookmyung Women's University, Seoul, South Korea – sequence: 5 givenname: Sanghoon orcidid: 0000-0001-9895-5347 surname: Lee fullname: Lee, Sanghoon email: slee@yonsei.ac.kr organization: Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea |
| BookMark | eNp9kM1PwkAQxTcGExH9B_TSxHNx9ovdHhFFSDAeqF4322WaFPuBuyWG_95WiAcPnt6b5L2ZzO-SDOqmRkJuKIwpheQ-na3f0zEDxsacKi04nJEhlVLHjIEcdB4kjTWj8oJchrAFoEILNSTLNZZ5_Lbb2NZmJUaPvdqA0foQWqyih85voqaOFvvK1tFL0xbdMA0BQ6iwbqO5txV-Nf7jipzntgx4fdIRSedP6WwRr16fl7PpKnYskW0stAU2mWQqsxQ0cEy00w4sTrhNclB6w6XMHIJDZJpBxhORudyCoEoJ5CNyd1y7883nHkNrts3e191FwxSjgmnKWZdix5TzTQgec7PzRWX9wVAwPTHzQ8z0xMyJWFfSf0quaG3_cOttUf5fvT1WC0T8vZUozUEk_BuzbHqw |
| CODEN | ITCTEM |
| CitedBy_id | crossref_primary_10_1109_TIM_2023_3298408 crossref_primary_10_1371_journal_pone_0323821 crossref_primary_10_1109_TPAMI_2023_3312092 crossref_primary_10_1016_j_neucom_2025_130632 crossref_primary_10_1109_TCSVT_2024_3360452 |
| Cites_doi | 10.1109/TCSVT.2018.2870832 10.1109/TCSVT.2019.2912988 10.1016/j.ijinfomgt.2020.102282 10.1109/ICCV48922.2021.01311 10.1145/3441628 10.3390/s19122794 10.1007/978-3-319-19147-8_10 10.1007/s11042-020-09004-3 10.1109/TMM.2020.2978637 10.1007/978-3-030-58517-4_21 10.1109/TIP.2013.2290592 10.1109/CVPRW.2012.6239349 10.1109/JSEN.2019.2903645 10.1515/jaiscr-2015-0014 10.1109/TCSVT.2019.2962063 10.1109/TIP.2020.2965299 10.1109/ACCESS.2018.2876864 10.1109/JBHI.2018.2872834 10.1007/s00371-017-1452-z 10.1109/ICCV.2019.00718 10.1016/j.engappai.2018.08.014 10.1109/ACCESS.2017.2778011 10.1145/3321511 10.1007/978-3-030-01234-2_8 10.1109/TCSVT.2021.3075607 10.1016/j.measurement.2017.10.056 10.1109/HRI.2013.6483552 10.1109/ACCESS.2020.3007956 10.1186/s13640-017-0202-5 10.1109/CVPR42600.2020.00028 10.1109/ACCESS.2017.2723039 10.1109/CVPR42600.2020.00099 10.1109/CVPR42600.2020.00026 10.1007/s11277-015-2680-z 10.1109/TCSVT.2018.2864148 10.1016/j.cviu.2013.01.013 10.1109/CVPR.2019.00810 10.1109/JSEN.2017.2679220 10.1109/CVPR42600.2020.01047 10.1109/CVPR46437.2021.00194 10.1109/ICCV.2017.115 10.1109/TCSVT.2016.2564878 10.1145/3485664 10.1109/CVPR.2017.502 10.1115/1.4033949 10.1016/j.cmpb.2013.11.012 10.1007/978-3-319-30808-1_147-1 10.1016/j.jpdc.2018.06.012 10.1007/s00371-018-1560-4 10.1109/TIP.2014.2303640 10.1145/2072298.2072412 10.1109/CVPR.2018.00685 10.1002/dev.10088 10.1109/TPAMI.2019.2916873 10.1109/TCSVT.2017.2760858 10.1109/TIP.2003.819861 10.1109/CVPR46437.2021.00055 10.1145/3240508.3240526 10.1109/EHB.2015.7391465 10.1016/0021-9290(95)00178-6 10.1109/CICARE.2014.7007845 10.1111/exsy.12805 10.1109/TCSVT.2018.2871660 10.23919/EUSIPCO.2017.8081218 10.1109/JSEN.2019.2960320 10.1016/j.jneumeth.2006.05.007 10.1609/aaai.v32i1.12328 10.1109/ICCVW54120.2021.00356 10.3390/sym11070911 10.1109/TCSVT.2017.2665359 10.1109/ROMAN.2016.7745093 10.1109/CVPR.2018.00742 10.1109/ICPR.2018.8545251 10.1109/TIP.2006.891348 10.1016/0197-4556(95)00033-2 10.1109/CVPR.2019.00794 10.1109/CVPR.2015.7298698 10.1145/2522628.2522651 10.1109/TCSVT.2018.2799968 10.1109/TSP.2009.2018358 10.1016/j.gaitpost.2015.10.023 10.1109/TCSVT.2020.3019293 10.1109/ICCV48922.2021.00676 10.1016/j.cie.2018.10.046 10.23919/APSIPA.2018.8659778 10.1109/TCSVT.2020.3017727 10.1109/CVPR.2015.7298751 10.3390/app7101101 10.1109/ICCV.2019.00630 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TCSVT.2022.3178430 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2205 |
| EndPage | 7176 |
| ExternalDocumentID | 10_1109_TCSVT_2022_3178430 9783049 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) funderid: 10.13039/501100003725 – fundername: Korean Government through the Ministry of Science and ICT (MSIT) grantid: NRF-2020R1A2C3011697 – fundername: Yonsei Signature Research Cluster Program of 2021 grantid: 2021-22-0001 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c295t-48a0266b7ba10803e98c8c0ae63a9f078d355bce0cee2820b394bcfa041774e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000864197600053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1051-8215 |
| IngestDate | Sun Jun 29 15:21:27 EDT 2025 Sat Nov 29 01:44:18 EST 2025 Tue Nov 18 22:43:33 EST 2025 Wed Aug 27 02:14:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-48a0266b7ba10803e98c8c0ae63a9f078d355bce0cee2820b394bcfa041774e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9895-5347 0000-0002-5273-0131 0000-0001-7622-0817 |
| PQID | 2721428132 |
| PQPubID | 85433 |
| PageCount | 17 |
| ParticipantIDs | crossref_citationtrail_10_1109_TCSVT_2022_3178430 ieee_primary_9783049 crossref_primary_10_1109_TCSVT_2022_3178430 proquest_journals_2721428132 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on circuits and systems for video technology |
| PublicationTitleAbbrev | TCSVT |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 bogo (ref73) 2016 hodgins (ref85) 2005 ref51 ref46 ref45 (ref97) 2002 ref47 ref42 ref41 ref44 ref43 parteli (ref48) 1995; 22 ref49 ref8 ref7 ref9 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref30 ref33 ref39 ref38 verma (ref4) 2019; 14 ref24 ref26 ref25 ref20 liu (ref68) 2016 cooijmans (ref92) 2016 ref21 shahroudy (ref67) 2016 ref28 ref27 ref29 ebert (ref36) 2017 duchi (ref94) 2011; 12 laban (ref23) 1974 ref13 ref12 ref15 ref14 ref96 ref99 ref11 ref98 ref10 ref17 ref16 ref19 ref18 srivastava (ref93) 2014; 15 aristidou (ref86) 2014 ref95 ref91 ref90 ref89 ref88 ref87 ref82 ref81 yang (ref2) 2018 ref84 ref83 liu (ref31) 2021 ref80 jang (ref50) 2017 ref79 ref78 kamnik (ref32) 2014; 116 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref1 ref71 ref70 ref72 ref69 ref64 ref63 ref66 ref65 ref60 laban (ref22) 1947 ref62 ref61 |
| References_xml | – ident: ref81 doi: 10.1109/TCSVT.2018.2870832 – ident: ref3 doi: 10.1109/TCSVT.2019.2912988 – ident: ref91 doi: 10.1016/j.ijinfomgt.2020.102282 – ident: ref29 doi: 10.1109/ICCV48922.2021.01311 – volume: 12 start-page: 2121 year: 2011 ident: ref94 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J Mach Learn Res – ident: ref14 doi: 10.1145/3441628 – ident: ref74 doi: 10.3390/s19122794 – ident: ref84 doi: 10.1007/978-3-319-19147-8_10 – start-page: 561 year: 2016 ident: ref73 article-title: Keep it SMPL: Automatic estimation of 3d human pose and shape from a single image publication-title: Proc Eur Conf Comput Vis (ECCV) – ident: ref6 doi: 10.1007/s11042-020-09004-3 – ident: ref13 doi: 10.1109/TMM.2020.2978637 – ident: ref60 doi: 10.1007/978-3-030-58517-4_21 – ident: ref80 doi: 10.1109/TIP.2013.2290592 – start-page: 141 year: 2017 ident: ref50 article-title: Automated dance motion evaluation using dynamic time warping and Laban movement analysis publication-title: Proc IEEE Int Conf Consum Electron (ICCE) – ident: ref21 doi: 10.1109/CVPRW.2012.6239349 – ident: ref19 doi: 10.1109/JSEN.2019.2903645 – ident: ref39 doi: 10.1515/jaiscr-2015-0014 – ident: ref24 doi: 10.1109/TCSVT.2019.2962063 – ident: ref15 doi: 10.1109/TIP.2020.2965299 – ident: ref104 doi: 10.1109/ACCESS.2018.2876864 – ident: ref44 doi: 10.1109/JBHI.2018.2872834 – ident: ref52 doi: 10.1007/s00371-017-1452-z – ident: ref57 doi: 10.1109/ICCV.2019.00718 – ident: ref5 doi: 10.1016/j.engappai.2018.08.014 – ident: ref56 doi: 10.1109/ACCESS.2017.2778011 – ident: ref89 doi: 10.1145/3321511 – ident: ref11 doi: 10.1007/978-3-030-01234-2_8 – ident: ref25 doi: 10.1109/TCSVT.2021.3075607 – volume: 14 start-page: 397 year: 2019 ident: ref4 article-title: A review of supervised and unsupervised machine learning techniques for suspicious behavior recognition in intelligent surveillance system publication-title: Int J Inf Technol – ident: ref34 doi: 10.1016/j.measurement.2017.10.056 – ident: ref20 doi: 10.1109/HRI.2013.6483552 – ident: ref53 doi: 10.1109/ACCESS.2020.3007956 – ident: ref55 doi: 10.1186/s13640-017-0202-5 – ident: ref65 doi: 10.1109/CVPR42600.2020.00028 – ident: ref10 doi: 10.1109/ACCESS.2017.2723039 – year: 2016 ident: ref92 article-title: Recurrent batch normalization publication-title: arXiv 1603 09025 – ident: ref58 doi: 10.1109/CVPR42600.2020.00099 – ident: ref28 doi: 10.1109/CVPR42600.2020.00026 – ident: ref82 doi: 10.1007/s11277-015-2680-z – ident: ref70 doi: 10.1109/TCSVT.2018.2864148 – year: 2002 ident: ref97 publication-title: Methodology for the Subjective Assessment of the Quality of Television Pictures – ident: ref7 doi: 10.1016/j.cviu.2013.01.013 – year: 2005 ident: ref85 publication-title: CMU Graphics Lab Motion Capture Database – start-page: 1010 year: 2016 ident: ref67 article-title: NTU RGB+D: A large scale dataset for 3D human activity analysis publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) – ident: ref27 doi: 10.1109/CVPR.2019.00810 – start-page: 99 year: 2017 ident: ref36 article-title: An open, labeled dataset for analysis and assessment of human motion publication-title: Proc Int Conf Wireless Mobile Commun Healthcare – ident: ref100 doi: 10.1109/JSEN.2017.2679220 – start-page: 1 year: 2018 ident: ref2 article-title: Low-cost CNN design for intelligent surveillance system publication-title: Proc Int Conf Syst Sci Eng (ICSSE) – ident: ref61 doi: 10.1109/CVPR42600.2020.01047 – ident: ref99 doi: 10.1109/CVPR46437.2021.00194 – ident: ref69 doi: 10.1109/ICCV.2017.115 – ident: ref1 doi: 10.1109/TCSVT.2016.2564878 – ident: ref87 doi: 10.1145/3485664 – ident: ref96 doi: 10.1109/CVPR.2017.502 – ident: ref33 doi: 10.1115/1.4033949 – volume: 116 start-page: 131 year: 2014 ident: ref32 article-title: Kinematics based sensory fusion for wearable motion assessment in human walking publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2013.11.012 – ident: ref77 doi: 10.1007/978-3-319-30808-1_147-1 – ident: ref88 doi: 10.1016/j.jpdc.2018.06.012 – ident: ref16 doi: 10.1007/s00371-018-1560-4 – ident: ref79 doi: 10.1109/TIP.2014.2303640 – ident: ref37 doi: 10.1145/2072298.2072412 – ident: ref63 doi: 10.1109/CVPR.2018.00685 – ident: ref47 doi: 10.1002/dev.10088 – ident: ref9 doi: 10.1109/TPAMI.2019.2916873 – ident: ref59 doi: 10.1109/TCSVT.2017.2760858 – ident: ref101 doi: 10.1109/TIP.2003.819861 – ident: ref30 doi: 10.1109/CVPR46437.2021.00055 – ident: ref90 doi: 10.1145/3240508.3240526 – ident: ref38 doi: 10.1109/EHB.2015.7391465 – ident: ref76 doi: 10.1016/0021-9290(95)00178-6 – ident: ref40 doi: 10.1109/CICARE.2014.7007845 – ident: ref17 doi: 10.1111/exsy.12805 – ident: ref78 doi: 10.1109/TCSVT.2018.2871660 – ident: ref42 doi: 10.23919/EUSIPCO.2017.8081218 – volume: 15 start-page: 1929 year: 2014 ident: ref93 article-title: DropOut: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: ref35 doi: 10.1109/JSEN.2019.2960320 – ident: ref49 doi: 10.1016/j.jneumeth.2006.05.007 – ident: ref62 doi: 10.1609/aaai.v32i1.12328 – ident: ref98 doi: 10.1109/ICCVW54120.2021.00356 – ident: ref18 doi: 10.3390/sym11070911 – ident: ref45 doi: 10.1109/TCSVT.2017.2665359 – ident: ref41 doi: 10.1109/ROMAN.2016.7745093 – ident: ref71 doi: 10.1109/CVPR.2018.00742 – ident: ref51 doi: 10.1109/ICPR.2018.8545251 – ident: ref102 doi: 10.1109/TIP.2006.891348 – volume: 22 start-page: 241 year: 1995 ident: ref48 article-title: Contribution of dance/movement therapy to the psychic understanding of motor stereotypes and distortions in autism and psychosis in childhood and adolescence publication-title: The Arts in Psychotherapy doi: 10.1016/0197-4556(95)00033-2 – ident: ref72 doi: 10.1109/CVPR.2019.00794 – ident: ref95 doi: 10.1109/CVPR.2015.7298698 – ident: ref54 doi: 10.1145/2522628.2522651 – ident: ref12 doi: 10.1109/TCSVT.2018.2799968 – ident: ref103 doi: 10.1109/TSP.2009.2018358 – ident: ref83 doi: 10.1016/j.gaitpost.2015.10.023 – ident: ref46 doi: 10.1109/TCSVT.2020.3019293 – start-page: 1 year: 2014 ident: ref86 article-title: Feature extraction for human motion indexing of acted dance performances publication-title: Proc Int Conf Comput Graph Theory Appl (GRAPP) – ident: ref66 doi: 10.1109/ICCV48922.2021.00676 – year: 1947 ident: ref22 publication-title: Effort – year: 2021 ident: ref31 article-title: Video swin transformer publication-title: arXiv 2106 13230 – ident: ref43 doi: 10.1016/j.cie.2018.10.046 – ident: ref105 doi: 10.23919/APSIPA.2018.8659778 – year: 1974 ident: ref23 publication-title: Effort Economy of Human Movement – ident: ref26 doi: 10.1109/TCSVT.2020.3017727 – ident: ref75 doi: 10.1109/CVPR.2015.7298751 – ident: ref8 doi: 10.3390/app7101101 – ident: ref64 doi: 10.1109/ICCV.2019.00630 – start-page: 816 year: 2016 ident: ref68 article-title: Spatio-temporal LSTM with trust gates for 3d human action recognition publication-title: Proc Eur Conf Comput Vis (ECCV) |
| SSID | ssj0014847 |
| Score | 2.4253528 |
| Snippet | Recently, human motion-centric videos have been attracting attention in the field of computer vision. Observing and detecting human motion in intelligent... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7160 |
| SubjectTerms | Algorithms Behavioral sciences Cameras Computer vision Human motion Human motion assessment Laban movement analysis motion effort model Motion measurement Motion perception Motion stability Neural networks self-updatable database system Semantics Stability analysis Surveillance Surveillance systems Three-dimensional displays Video Videos |
| Title | Self-Updatable Database System Based on Human Motion Assessment Framework |
| URI | https://ieeexplore.ieee.org/document/9783049 https://www.proquest.com/docview/2721428132 |
| Volume | 32 |
| WOSCitedRecordID | wos000864197600053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2205 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014847 issn: 1051-8215 databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8aAHX1WsVsnBm0azj2azx1otClqEVultSbJZEMq29OHvd5J9UFAET5tDsixfdne-ycx8A3CVaealhgUU2bJPQ6U0lZnmVKXS091Acs-4QuGXaDgUk0n81oCbuhbGGOOSz8ytHbpYfjrTa3tUZtVgbVRoC7aiiBe1WnXEIBSumRjSBY8KtGNVgQyL78b90ccYXUHfRw81EqHNeN4wQq6ryo9fsbMvg_3_PdkB7JU8kvSKjT-EhsmPYHdDXbAFzyMzzej73CaBqqkhD_aKRosUKuXkHscpmeXEHeSTV9fPh_RqqU4yqBK3jmE8eBz3n2jZOYFqP-6uaCgk-lZcRUraHMLAxEILzaThgYwzZAUp0gylDUMTiT4XU0EcKp1JFnpIB01wAs18lptTIJwFsbCtwrmy1edCceVxg2DLtJsi2WuDVyGZ6FJV3Da3mCbOu2Bx4tBPLPpJiX4brus180JT48_ZLYt3PbOEug2dasOS8rNbJn7kFOTQwz77fdU57Nh7F9l4HWiuFmtzAdv6a_W5XFy6N-obwLPHfw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFdSDrypWq-bgTaPZd_ZYq6XFtghdpbclyWZBKNvSh7_fJPugoAieNoeEXb7s7nyTmfkG4DYVxEokcbBiyzZ2OReYpcLHPGGW8BzmW9IUCg-C0YhOJuFbDe6rWhgppUk-kw96aGL5yUys9VGZVoPVUaEt2PZc1yZ5tVYVM3CpaSemCIOFqbJkZYkMCR-jzvgjUs6gbSsfNaCuznneMEOmr8qPn7GxMN3D_z3bERwUTBK1860_hprMTmB_Q1-wAf2xnKb4fa7TQPlUomd9VWYL5Trl6EmNEzTLkDnKR0PT0Qe1K7FO1C1Tt04h6r5EnR4ueidgYYfeCruUKe_K5wFnOovQkSEVVBAmfYeFqeIFiSIaXEiijKTyugh3QpeLlBHXUoRQOmdQz2aZPAfkEyekulm4z3X9OeU-t3ypwGaJlyi61wSrRDIWha64bm8xjY1_QcLYoB9r9OMC_SbcVWvmuarGn7MbGu9qZgF1E1rlhsXFh7eM7cBoyCkf--L3VTew24uGg3jQH71ewp6-T56b14L6arGWV7Ajvlafy8W1ebu-AU9QysY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Updatable+Database+System+Based+on+Human+Motion+Assessment+Framework&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Lee%2C+Kyoungoh&rft.au=Park%2C+Yeseung&rft.au=Huh%2C+Jungwoo&rft.au=Kang%2C+Jiwoo&rft.date=2022-10-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=32&rft.issue=10&rft.spage=7160&rft.epage=7176&rft_id=info:doi/10.1109%2FTCSVT.2022.3178430&rft.externalDocID=9783049 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |