Self-Updatable Database System Based on Human Motion Assessment Framework

Recently, human motion-centric videos have been attracting attention in the field of computer vision. Observing and detecting human motion in intelligent surveillance camera systems is essential for understanding the intentions of target subjects. However, these videos have vast amounts of disparate...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems for video technology Ročník 32; číslo 10; s. 7160 - 7176
Hlavní autoři: Lee, Kyoungoh, Park, Yeseung, Huh, Jungwoo, Kang, Jiwoo, Lee, Sanghoon
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1051-8215, 1558-2205
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recently, human motion-centric videos have been attracting attention in the field of computer vision. Observing and detecting human motion in intelligent surveillance camera systems is essential for understanding the intentions of target subjects. However, these videos have vast amounts of disparate and complex information, and hence they are difficult to process and label automatically. As a result, building and maintaining a database using motion-centric videos requires considerable labor in trimming and classifying the videos. Therefore, we propose a self-updatable motion database system based on a human motion assessment framework for evaluating complex human movements. The framework quantifies three primitive motion properties: stability, liveliness, and attention. This assessment highlights the semantics of human motion in the input video. The semantic motion sequence obtained after the motion assessment is compared with a similarity motion database to determine whether the database needs to be updated; for efficient comparison, we introduce a sequential autoencoder model with a long short-term memory neural network. The proposed system maintains the database within a surveillance camera system using a motion update algorithm; unseen motions in the database are updated using a camera-based surveillance system. In addition, this framework combines state-of-art action recognition methods to improve performance by up to 11% via the self-update of motion.
AbstractList Recently, human motion-centric videos have been attracting attention in the field of computer vision. Observing and detecting human motion in intelligent surveillance camera systems is essential for understanding the intentions of target subjects. However, these videos have vast amounts of disparate and complex information, and hence they are difficult to process and label automatically. As a result, building and maintaining a database using motion-centric videos requires considerable labor in trimming and classifying the videos. Therefore, we propose a self-updatable motion database system based on a human motion assessment framework for evaluating complex human movements. The framework quantifies three primitive motion properties: stability, liveliness, and attention. This assessment highlights the semantics of human motion in the input video. The semantic motion sequence obtained after the motion assessment is compared with a similarity motion database to determine whether the database needs to be updated; for efficient comparison, we introduce a sequential autoencoder model with a long short-term memory neural network. The proposed system maintains the database within a surveillance camera system using a motion update algorithm; unseen motions in the database are updated using a camera-based surveillance system. In addition, this framework combines state-of-art action recognition methods to improve performance by up to 11% via the self-update of motion.
Author Huh, Jungwoo
Lee, Kyoungoh
Kang, Jiwoo
Park, Yeseung
Lee, Sanghoon
Author_xml – sequence: 1
  givenname: Kyoungoh
  orcidid: 0000-0002-5273-0131
  surname: Lee
  fullname: Lee, Kyoungoh
  email: longweek7@etri.re.kr
  organization: Electronics and Telecommunications Research Institute, Daejeon, South Korea
– sequence: 2
  givenname: Yeseung
  surname: Park
  fullname: Park, Yeseung
  email: pys940617@yonsei.ac.kr
  organization: Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea
– sequence: 3
  givenname: Jungwoo
  surname: Huh
  fullname: Huh, Jungwoo
  email: gjwjddn9@yonsei.ac.kr
  organization: Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea
– sequence: 4
  givenname: Jiwoo
  orcidid: 0000-0001-7622-0817
  surname: Kang
  fullname: Kang, Jiwoo
  email: jwkang@sookmyung.ac.kr
  organization: Department of IT Engineering, Sookmyung Women's University, Seoul, South Korea
– sequence: 5
  givenname: Sanghoon
  orcidid: 0000-0001-9895-5347
  surname: Lee
  fullname: Lee, Sanghoon
  email: slee@yonsei.ac.kr
  organization: Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea
BookMark eNp9kM1PwkAQxTcGExH9B_TSxHNx9ovdHhFFSDAeqF4322WaFPuBuyWG_95WiAcPnt6b5L2ZzO-SDOqmRkJuKIwpheQ-na3f0zEDxsacKi04nJEhlVLHjIEcdB4kjTWj8oJchrAFoEILNSTLNZZ5_Lbb2NZmJUaPvdqA0foQWqyih85voqaOFvvK1tFL0xbdMA0BQ6iwbqO5txV-Nf7jipzntgx4fdIRSedP6WwRr16fl7PpKnYskW0stAU2mWQqsxQ0cEy00w4sTrhNclB6w6XMHIJDZJpBxhORudyCoEoJ5CNyd1y7883nHkNrts3e191FwxSjgmnKWZdix5TzTQgec7PzRWX9wVAwPTHzQ8z0xMyJWFfSf0quaG3_cOttUf5fvT1WC0T8vZUozUEk_BuzbHqw
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TIM_2023_3298408
crossref_primary_10_1371_journal_pone_0323821
crossref_primary_10_1109_TPAMI_2023_3312092
crossref_primary_10_1016_j_neucom_2025_130632
crossref_primary_10_1109_TCSVT_2024_3360452
Cites_doi 10.1109/TCSVT.2018.2870832
10.1109/TCSVT.2019.2912988
10.1016/j.ijinfomgt.2020.102282
10.1109/ICCV48922.2021.01311
10.1145/3441628
10.3390/s19122794
10.1007/978-3-319-19147-8_10
10.1007/s11042-020-09004-3
10.1109/TMM.2020.2978637
10.1007/978-3-030-58517-4_21
10.1109/TIP.2013.2290592
10.1109/CVPRW.2012.6239349
10.1109/JSEN.2019.2903645
10.1515/jaiscr-2015-0014
10.1109/TCSVT.2019.2962063
10.1109/TIP.2020.2965299
10.1109/ACCESS.2018.2876864
10.1109/JBHI.2018.2872834
10.1007/s00371-017-1452-z
10.1109/ICCV.2019.00718
10.1016/j.engappai.2018.08.014
10.1109/ACCESS.2017.2778011
10.1145/3321511
10.1007/978-3-030-01234-2_8
10.1109/TCSVT.2021.3075607
10.1016/j.measurement.2017.10.056
10.1109/HRI.2013.6483552
10.1109/ACCESS.2020.3007956
10.1186/s13640-017-0202-5
10.1109/CVPR42600.2020.00028
10.1109/ACCESS.2017.2723039
10.1109/CVPR42600.2020.00099
10.1109/CVPR42600.2020.00026
10.1007/s11277-015-2680-z
10.1109/TCSVT.2018.2864148
10.1016/j.cviu.2013.01.013
10.1109/CVPR.2019.00810
10.1109/JSEN.2017.2679220
10.1109/CVPR42600.2020.01047
10.1109/CVPR46437.2021.00194
10.1109/ICCV.2017.115
10.1109/TCSVT.2016.2564878
10.1145/3485664
10.1109/CVPR.2017.502
10.1115/1.4033949
10.1016/j.cmpb.2013.11.012
10.1007/978-3-319-30808-1_147-1
10.1016/j.jpdc.2018.06.012
10.1007/s00371-018-1560-4
10.1109/TIP.2014.2303640
10.1145/2072298.2072412
10.1109/CVPR.2018.00685
10.1002/dev.10088
10.1109/TPAMI.2019.2916873
10.1109/TCSVT.2017.2760858
10.1109/TIP.2003.819861
10.1109/CVPR46437.2021.00055
10.1145/3240508.3240526
10.1109/EHB.2015.7391465
10.1016/0021-9290(95)00178-6
10.1109/CICARE.2014.7007845
10.1111/exsy.12805
10.1109/TCSVT.2018.2871660
10.23919/EUSIPCO.2017.8081218
10.1109/JSEN.2019.2960320
10.1016/j.jneumeth.2006.05.007
10.1609/aaai.v32i1.12328
10.1109/ICCVW54120.2021.00356
10.3390/sym11070911
10.1109/TCSVT.2017.2665359
10.1109/ROMAN.2016.7745093
10.1109/CVPR.2018.00742
10.1109/ICPR.2018.8545251
10.1109/TIP.2006.891348
10.1016/0197-4556(95)00033-2
10.1109/CVPR.2019.00794
10.1109/CVPR.2015.7298698
10.1145/2522628.2522651
10.1109/TCSVT.2018.2799968
10.1109/TSP.2009.2018358
10.1016/j.gaitpost.2015.10.023
10.1109/TCSVT.2020.3019293
10.1109/ICCV48922.2021.00676
10.1016/j.cie.2018.10.046
10.23919/APSIPA.2018.8659778
10.1109/TCSVT.2020.3017727
10.1109/CVPR.2015.7298751
10.3390/app7101101
10.1109/ICCV.2019.00630
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2022.3178430
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 7176
ExternalDocumentID 10_1109_TCSVT_2022_3178430
9783049
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF)
  funderid: 10.13039/501100003725
– fundername: Korean Government through the Ministry of Science and ICT (MSIT)
  grantid: NRF-2020R1A2C3011697
– fundername: Yonsei Signature Research Cluster Program of 2021
  grantid: 2021-22-0001
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-48a0266b7ba10803e98c8c0ae63a9f078d355bce0cee2820b394bcfa041774e3
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000864197600053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-8215
IngestDate Sun Jun 29 15:21:27 EDT 2025
Sat Nov 29 01:44:18 EST 2025
Tue Nov 18 22:43:33 EST 2025
Wed Aug 27 02:14:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-48a0266b7ba10803e98c8c0ae63a9f078d355bce0cee2820b394bcfa041774e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9895-5347
0000-0002-5273-0131
0000-0001-7622-0817
PQID 2721428132
PQPubID 85433
PageCount 17
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2022_3178430
ieee_primary_9783049
crossref_primary_10_1109_TCSVT_2022_3178430
proquest_journals_2721428132
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
bogo (ref73) 2016
hodgins (ref85) 2005
ref51
ref46
ref45
(ref97) 2002
ref47
ref42
ref41
ref44
ref43
parteli (ref48) 1995; 22
ref49
ref8
ref7
ref9
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref30
ref33
ref39
ref38
verma (ref4) 2019; 14
ref24
ref26
ref25
ref20
liu (ref68) 2016
cooijmans (ref92) 2016
ref21
shahroudy (ref67) 2016
ref28
ref27
ref29
ebert (ref36) 2017
duchi (ref94) 2011; 12
laban (ref23) 1974
ref13
ref12
ref15
ref14
ref96
ref99
ref11
ref98
ref10
ref17
ref16
ref19
ref18
srivastava (ref93) 2014; 15
aristidou (ref86) 2014
ref95
ref91
ref90
ref89
ref88
ref87
ref82
ref81
yang (ref2) 2018
ref84
ref83
liu (ref31) 2021
ref80
jang (ref50) 2017
ref79
ref78
kamnik (ref32) 2014; 116
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref1
ref71
ref70
ref72
ref69
ref64
ref63
ref66
ref65
ref60
laban (ref22) 1947
ref62
ref61
References_xml – ident: ref81
  doi: 10.1109/TCSVT.2018.2870832
– ident: ref3
  doi: 10.1109/TCSVT.2019.2912988
– ident: ref91
  doi: 10.1016/j.ijinfomgt.2020.102282
– ident: ref29
  doi: 10.1109/ICCV48922.2021.01311
– volume: 12
  start-page: 2121
  year: 2011
  ident: ref94
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J Mach Learn Res
– ident: ref14
  doi: 10.1145/3441628
– ident: ref74
  doi: 10.3390/s19122794
– ident: ref84
  doi: 10.1007/978-3-319-19147-8_10
– start-page: 561
  year: 2016
  ident: ref73
  article-title: Keep it SMPL: Automatic estimation of 3d human pose and shape from a single image
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref6
  doi: 10.1007/s11042-020-09004-3
– ident: ref13
  doi: 10.1109/TMM.2020.2978637
– ident: ref60
  doi: 10.1007/978-3-030-58517-4_21
– ident: ref80
  doi: 10.1109/TIP.2013.2290592
– start-page: 141
  year: 2017
  ident: ref50
  article-title: Automated dance motion evaluation using dynamic time warping and Laban movement analysis
  publication-title: Proc IEEE Int Conf Consum Electron (ICCE)
– ident: ref21
  doi: 10.1109/CVPRW.2012.6239349
– ident: ref19
  doi: 10.1109/JSEN.2019.2903645
– ident: ref39
  doi: 10.1515/jaiscr-2015-0014
– ident: ref24
  doi: 10.1109/TCSVT.2019.2962063
– ident: ref15
  doi: 10.1109/TIP.2020.2965299
– ident: ref104
  doi: 10.1109/ACCESS.2018.2876864
– ident: ref44
  doi: 10.1109/JBHI.2018.2872834
– ident: ref52
  doi: 10.1007/s00371-017-1452-z
– ident: ref57
  doi: 10.1109/ICCV.2019.00718
– ident: ref5
  doi: 10.1016/j.engappai.2018.08.014
– ident: ref56
  doi: 10.1109/ACCESS.2017.2778011
– ident: ref89
  doi: 10.1145/3321511
– ident: ref11
  doi: 10.1007/978-3-030-01234-2_8
– ident: ref25
  doi: 10.1109/TCSVT.2021.3075607
– volume: 14
  start-page: 397
  year: 2019
  ident: ref4
  article-title: A review of supervised and unsupervised machine learning techniques for suspicious behavior recognition in intelligent surveillance system
  publication-title: Int J Inf Technol
– ident: ref34
  doi: 10.1016/j.measurement.2017.10.056
– ident: ref20
  doi: 10.1109/HRI.2013.6483552
– ident: ref53
  doi: 10.1109/ACCESS.2020.3007956
– ident: ref55
  doi: 10.1186/s13640-017-0202-5
– ident: ref65
  doi: 10.1109/CVPR42600.2020.00028
– ident: ref10
  doi: 10.1109/ACCESS.2017.2723039
– year: 2016
  ident: ref92
  article-title: Recurrent batch normalization
  publication-title: arXiv 1603 09025
– ident: ref58
  doi: 10.1109/CVPR42600.2020.00099
– ident: ref28
  doi: 10.1109/CVPR42600.2020.00026
– ident: ref82
  doi: 10.1007/s11277-015-2680-z
– ident: ref70
  doi: 10.1109/TCSVT.2018.2864148
– year: 2002
  ident: ref97
  publication-title: Methodology for the Subjective Assessment of the Quality of Television Pictures
– ident: ref7
  doi: 10.1016/j.cviu.2013.01.013
– year: 2005
  ident: ref85
  publication-title: CMU Graphics Lab Motion Capture Database
– start-page: 1010
  year: 2016
  ident: ref67
  article-title: NTU RGB+D: A large scale dataset for 3D human activity analysis
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref27
  doi: 10.1109/CVPR.2019.00810
– start-page: 99
  year: 2017
  ident: ref36
  article-title: An open, labeled dataset for analysis and assessment of human motion
  publication-title: Proc Int Conf Wireless Mobile Commun Healthcare
– ident: ref100
  doi: 10.1109/JSEN.2017.2679220
– start-page: 1
  year: 2018
  ident: ref2
  article-title: Low-cost CNN design for intelligent surveillance system
  publication-title: Proc Int Conf Syst Sci Eng (ICSSE)
– ident: ref61
  doi: 10.1109/CVPR42600.2020.01047
– ident: ref99
  doi: 10.1109/CVPR46437.2021.00194
– ident: ref69
  doi: 10.1109/ICCV.2017.115
– ident: ref1
  doi: 10.1109/TCSVT.2016.2564878
– ident: ref87
  doi: 10.1145/3485664
– ident: ref96
  doi: 10.1109/CVPR.2017.502
– ident: ref33
  doi: 10.1115/1.4033949
– volume: 116
  start-page: 131
  year: 2014
  ident: ref32
  article-title: Kinematics based sensory fusion for wearable motion assessment in human walking
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2013.11.012
– ident: ref77
  doi: 10.1007/978-3-319-30808-1_147-1
– ident: ref88
  doi: 10.1016/j.jpdc.2018.06.012
– ident: ref16
  doi: 10.1007/s00371-018-1560-4
– ident: ref79
  doi: 10.1109/TIP.2014.2303640
– ident: ref37
  doi: 10.1145/2072298.2072412
– ident: ref63
  doi: 10.1109/CVPR.2018.00685
– ident: ref47
  doi: 10.1002/dev.10088
– ident: ref9
  doi: 10.1109/TPAMI.2019.2916873
– ident: ref59
  doi: 10.1109/TCSVT.2017.2760858
– ident: ref101
  doi: 10.1109/TIP.2003.819861
– ident: ref30
  doi: 10.1109/CVPR46437.2021.00055
– ident: ref90
  doi: 10.1145/3240508.3240526
– ident: ref38
  doi: 10.1109/EHB.2015.7391465
– ident: ref76
  doi: 10.1016/0021-9290(95)00178-6
– ident: ref40
  doi: 10.1109/CICARE.2014.7007845
– ident: ref17
  doi: 10.1111/exsy.12805
– ident: ref78
  doi: 10.1109/TCSVT.2018.2871660
– ident: ref42
  doi: 10.23919/EUSIPCO.2017.8081218
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref93
  article-title: DropOut: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: ref35
  doi: 10.1109/JSEN.2019.2960320
– ident: ref49
  doi: 10.1016/j.jneumeth.2006.05.007
– ident: ref62
  doi: 10.1609/aaai.v32i1.12328
– ident: ref98
  doi: 10.1109/ICCVW54120.2021.00356
– ident: ref18
  doi: 10.3390/sym11070911
– ident: ref45
  doi: 10.1109/TCSVT.2017.2665359
– ident: ref41
  doi: 10.1109/ROMAN.2016.7745093
– ident: ref71
  doi: 10.1109/CVPR.2018.00742
– ident: ref51
  doi: 10.1109/ICPR.2018.8545251
– ident: ref102
  doi: 10.1109/TIP.2006.891348
– volume: 22
  start-page: 241
  year: 1995
  ident: ref48
  article-title: Contribution of dance/movement therapy to the psychic understanding of motor stereotypes and distortions in autism and psychosis in childhood and adolescence
  publication-title: The Arts in Psychotherapy
  doi: 10.1016/0197-4556(95)00033-2
– ident: ref72
  doi: 10.1109/CVPR.2019.00794
– ident: ref95
  doi: 10.1109/CVPR.2015.7298698
– ident: ref54
  doi: 10.1145/2522628.2522651
– ident: ref12
  doi: 10.1109/TCSVT.2018.2799968
– ident: ref103
  doi: 10.1109/TSP.2009.2018358
– ident: ref83
  doi: 10.1016/j.gaitpost.2015.10.023
– ident: ref46
  doi: 10.1109/TCSVT.2020.3019293
– start-page: 1
  year: 2014
  ident: ref86
  article-title: Feature extraction for human motion indexing of acted dance performances
  publication-title: Proc Int Conf Comput Graph Theory Appl (GRAPP)
– ident: ref66
  doi: 10.1109/ICCV48922.2021.00676
– year: 1947
  ident: ref22
  publication-title: Effort
– year: 2021
  ident: ref31
  article-title: Video swin transformer
  publication-title: arXiv 2106 13230
– ident: ref43
  doi: 10.1016/j.cie.2018.10.046
– ident: ref105
  doi: 10.23919/APSIPA.2018.8659778
– year: 1974
  ident: ref23
  publication-title: Effort Economy of Human Movement
– ident: ref26
  doi: 10.1109/TCSVT.2020.3017727
– ident: ref75
  doi: 10.1109/CVPR.2015.7298751
– ident: ref8
  doi: 10.3390/app7101101
– ident: ref64
  doi: 10.1109/ICCV.2019.00630
– start-page: 816
  year: 2016
  ident: ref68
  article-title: Spatio-temporal LSTM with trust gates for 3d human action recognition
  publication-title: Proc Eur Conf Comput Vis (ECCV)
SSID ssj0014847
Score 2.4253528
Snippet Recently, human motion-centric videos have been attracting attention in the field of computer vision. Observing and detecting human motion in intelligent...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7160
SubjectTerms Algorithms
Behavioral sciences
Cameras
Computer vision
Human motion
Human motion assessment
Laban movement analysis
motion effort model
Motion measurement
Motion perception
Motion stability
Neural networks
self-updatable database system
Semantics
Stability analysis
Surveillance
Surveillance systems
Three-dimensional displays
Video
Videos
Title Self-Updatable Database System Based on Human Motion Assessment Framework
URI https://ieeexplore.ieee.org/document/9783049
https://www.proquest.com/docview/2721428132
Volume 32
WOSCitedRecordID wos000864197600053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014847
  issn: 1051-8215
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7a4kEPvqpYrbIHbxpNNmmye6zVoqBFaCy9hc3uBISSlj78_e5uHhQUwVP2sBPCTJKZb2fmG4BrwTGUlgpRW9gJpMocIZTvRD5KL1OUKnveMXmNRiM2nfL3BtzWvTCIaIvP8M4sbS5fzeXGHJUZNliTFWpCM4rColerzhgEzA4T0-GC5zDtx6oGGZffx4PxJNZQkFKNUCMWmIrnLSdkp6r8-BVb_zI8-N-THcJ-GUeSfmH4I2hgfgx7W-yCbXgZ4yxzPhamCDSdIXk0V-20SMFSTh70WpF5TuxBPnmz83xIv6bqJMOqcOsE4uFTPHh2yskJjqS8t3YCJjS2CtMoFaaG0EfOJJOuwNAXPNNRgdJhRirR1S5SYy439XmQyky4gafDQfRPoZXPczwDghl1taRnErYBKsmo6HlKg7Y06_lZyDrgVZpMZMkqboZbzBKLLlyeWO0nRvtJqf0O3NQyi4JT48_dbaPvemep6g50K4Ml5We3SmhkGeQ0wj7_XeoCds29i2q8LrTWyw1ewo78Wn-ullf2jfoGGkzHwg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQHv6Y4nZoH37TaptmaPs7p2HAbwurYW0mTKwhjk33495ukXRkogk_NQ46Wu7Z3v9zd7wBuRYgNaakQtYUdJlXqCKF8J_BReqmiVNnzjlEvGAz4eBy-leC-6IVBRFt8hg9maXP5aiZX5qjMsMGarNAWbNcZo27WrVXkDBi348R0wOA5XHuydYuMGz5GreEo0mCQUo1RA85MzfOGG7JzVX78jK2HaR_-79mO4CCPJEkzM_0xlHB6Avsb_IIV6A5xkjrvn6YMNJkgeTZX7bZIxlNOnvRakdmU2KN80rcTfUizIOsk7XXp1ilE7Zeo1XHy2QmOpGF96TAuNLpqJEEiTBWhjyGXXLoCG74IUx0XKB1oJBJd7SQ16nITP2SJTIXLPB0Qon8G5elsiudAMKWulvRMypahkpyKuqc0bEvSup82eBW8tSZjmfOKm_EWk9jiCzeMrfZjo_04134V7gqZz4xV48_dFaPvYmeu6irU1gaL8w9vEdPAcshpjH3xu9QN7Haifi_udQevl7Bn7pPV5tWgvJyv8Ap25NfyYzG_tm_XN6r4ywk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Updatable+Database+System+Based+on+Human+Motion+Assessment+Framework&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Lee%2C+Kyoungoh&rft.au=Park%2C+Yeseung&rft.au=Huh%2C+Jungwoo&rft.au=Kang%2C+Jiwoo&rft.date=2022-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=10&rft.spage=7160&rft_id=info:doi/10.1109%2FTCSVT.2022.3178430&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon