Approximate Softmax Functions for Energy-Efficient Deep Neural Networks
Approximate computing has emerged as a new paradigm that provides power-efficient and high-performance arithmetic designs by relaxing the stringent requirement of accuracy. Nonlinear functions (such as softmax , rectified linear unit ( ReLU ), Tanh , and Sigmoid ) are extensively used in deep neural...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on very large scale integration (VLSI) systems Jg. 31; H. 1; S. 1 - 13 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1063-8210, 1557-9999 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!