Data-Driven Adaptive Network Slicing for Multi-Tenant Networks

Network slicing to support multi-tenancy plays a key role in improving the performance of 5G and beyond networks. In this paper, we study dynamically slicing network resources in the backhaul and Radio Access Network (RAN) prior to user demand observations across multiple tenants, where each tenant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in signal processing Jg. 16; H. 1; S. 113 - 128
Hauptverfasser: Reyhanian, Navid, Luo, Zhi-Quan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1932-4553, 1941-0484
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Network slicing to support multi-tenancy plays a key role in improving the performance of 5G and beyond networks. In this paper, we study dynamically slicing network resources in the backhaul and Radio Access Network (RAN) prior to user demand observations across multiple tenants, where each tenant owns and operates several slices to provide different services to users. In the proposed two time-scale scheme, a subset of network slices is activated via a novel sparse optimization framework in the long time-scale with the goal of maximizing the expected utilities of tenants while in the short time-scale the activated slices are reconfigured according to the time-varying user traffic and channel states. Specifically, using the statistics from users and channels and also considering the expected utility from serving users of a slice and the reconfiguration cost, we formulate a sparse optimization problem to update the configuration of a slice resources such that the maximum isolation of reserved resources is enforced. The formulated optimization problems for long and short time-scales are non-convex and difficult to solve. We use the <inline-formula><tex-math notation="LaTeX">\ell _q</tex-math></inline-formula>-norm, <inline-formula><tex-math notation="LaTeX">0< q< 1</tex-math></inline-formula>, and group LASSO regularizations to iteratively find convex approximations of the optimization problems. We propose a Frank-Wolfe algorithm to iteratively solve approximated problems in long time-scales. To cope with the dynamical nature of traffic variations, we propose a fast, distributed algorithm to solve the approximated optimization problems in short time-scales. Simulation results demonstrate the maximized tenant utilities from slice activation via our approach relative to the optimal solution. Moreover, we compare the maximized tenant utilities by our slice reconfiguration approach against the existing state-of-the-art method based on <inline-formula><tex-math notation="LaTeX">\ell _1</tex-math></inline-formula> regularization.
AbstractList Network slicing to support multi-tenancy plays a key role in improving the performance of 5G and beyond networks. In this paper, we study dynamically slicing network resources in the backhaul and Radio Access Network (RAN) prior to user demand observations across multiple tenants, where each tenant owns and operates several slices to provide different services to users. In the proposed two time-scale scheme, a subset of network slices is activated via a novel sparse optimization framework in the long time-scale with the goal of maximizing the expected utilities of tenants while in the short time-scale the activated slices are reconfigured according to the time-varying user traffic and channel states. Specifically, using the statistics from users and channels and also considering the expected utility from serving users of a slice and the reconfiguration cost, we formulate a sparse optimization problem to update the configuration of a slice resources such that the maximum isolation of reserved resources is enforced. The formulated optimization problems for long and short time-scales are non-convex and difficult to solve. We use the [Formula Omitted]-norm, [Formula Omitted], and group LASSO regularizations to iteratively find convex approximations of the optimization problems. We propose a Frank-Wolfe algorithm to iteratively solve approximated problems in long time-scales. To cope with the dynamical nature of traffic variations, we propose a fast, distributed algorithm to solve the approximated optimization problems in short time-scales. Simulation results demonstrate the maximized tenant utilities from slice activation via our approach relative to the optimal solution. Moreover, we compare the maximized tenant utilities by our slice reconfiguration approach against the existing state-of-the-art method based on [Formula Omitted] regularization.
Network slicing to support multi-tenancy plays a key role in improving the performance of 5G and beyond networks. In this paper, we study dynamically slicing network resources in the backhaul and Radio Access Network (RAN) prior to user demand observations across multiple tenants, where each tenant owns and operates several slices to provide different services to users. In the proposed two time-scale scheme, a subset of network slices is activated via a novel sparse optimization framework in the long time-scale with the goal of maximizing the expected utilities of tenants while in the short time-scale the activated slices are reconfigured according to the time-varying user traffic and channel states. Specifically, using the statistics from users and channels and also considering the expected utility from serving users of a slice and the reconfiguration cost, we formulate a sparse optimization problem to update the configuration of a slice resources such that the maximum isolation of reserved resources is enforced. The formulated optimization problems for long and short time-scales are non-convex and difficult to solve. We use the <inline-formula><tex-math notation="LaTeX">\ell _q</tex-math></inline-formula>-norm, <inline-formula><tex-math notation="LaTeX">0< q< 1</tex-math></inline-formula>, and group LASSO regularizations to iteratively find convex approximations of the optimization problems. We propose a Frank-Wolfe algorithm to iteratively solve approximated problems in long time-scales. To cope with the dynamical nature of traffic variations, we propose a fast, distributed algorithm to solve the approximated optimization problems in short time-scales. Simulation results demonstrate the maximized tenant utilities from slice activation via our approach relative to the optimal solution. Moreover, we compare the maximized tenant utilities by our slice reconfiguration approach against the existing state-of-the-art method based on <inline-formula><tex-math notation="LaTeX">\ell _1</tex-math></inline-formula> regularization.
Author Reyhanian, Navid
Luo, Zhi-Quan
Author_xml – sequence: 1
  givenname: Navid
  orcidid: 0000-0002-2653-943X
  surname: Reyhanian
  fullname: Reyhanian, Navid
  email: navid@umn.edu
  organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
– sequence: 2
  givenname: Zhi-Quan
  orcidid: 0000-0003-3995-914X
  surname: Luo
  fullname: Luo, Zhi-Quan
  email: luozq@cuhk.edu.cn
  organization: Shenzhen Research Institute of Big Data and The Chinese University of Hong Kong, Shenzhen, China
BookMark eNp9kEtPAjEUhRuDiYD-Ad1M4nqw7043JgR8Bh8JuG4unWKK2MFO0fjvnRF04cLVPYvz3ZN8PdQJVXAIHRM8IATrs9vpbPo4oJiSASNUKS33UJdoTnLMC95pM6M5F4IdoF5dLzEWShLeRedjSJCPo393IRuWsE5Nyu5d-qjiSzZdeevDc7aoYna3WSWfz1yAkH4K9SHaX8Cqdke720dPlxez0XU-ebi6GQ0nuaVapJxZBgBkzoWVrIA5YcIClJIry4GVBdOgrWhyYZ1UhZCYK8cVxqwUjinN-uh0-3cdq7eNq5NZVpsYmklDJZVaMVy0Lbpt2VjVdXQLs47-FeKnIdi0nsy3J9N6MjtPDVT8gaxPkHwVUgS_-h892aLeOfe7pSVhSlH2BVe-dyc
CODEN IJSTGY
CitedBy_id crossref_primary_10_1109_TVT_2022_3182899
crossref_primary_10_1109_COMST_2023_3249835
crossref_primary_10_1109_COMST_2024_3390613
crossref_primary_10_1109_TNSM_2024_3351669
crossref_primary_10_1109_TNSM_2023_3332509
crossref_primary_10_3390_s23135989
crossref_primary_10_1109_JSTSP_2023_3343626
crossref_primary_10_3390_s24175558
Cites_doi 10.1109/TCOMM.2018.2809724
10.1109/MCOM.2017.1600920
10.1109/TVT.2020.2985289
10.1109/NetSoft48620.2020.9165512
10.1109/TWC.2018.2859918
10.1109/TVT.2019.2917426
10.1109/JSAC.2020.2986898
10.1109/ACCESS.2020.2975072
10.1109/TBC.2020.3031742
10.1016/s0076-5392(08)63022-2
10.1109/IEEECONF53345.2021.9723177
10.1109/TMC.2017.2752159
10.1007/978-3-030-16170-5_2
10.1109/TCOMM.2018.2868652
10.1145/3127479.3129250
10.1109/TVT.2019.2959193
10.1109/ICASSP40776.2020.9054706
10.1561/9781601984616
10.1109/SPAWC48557.2020.9154281
10.1109/TVT.2019.2924456
10.1109/GLOCOM.2018.8647166
10.1109/TNSM.2019.2899609
10.1007/s10107-016-1057-8
10.1016/j.jspi.2019.12.003
10.1109/IEEECONF51394.2020.9443543
10.1109/TNSM.2020.3019248
10.1109/ICASSP39728.2021.9413706
10.1109/TIT.2015.2429611
10.1109/MIC.2017.3481355
10.1109/GLOCOM.2017.8254073
10.1109/TNET.2017.2720668
10.1109/TWC.2003.814353
10.1137/120891009
10.1109/SPAWC48557.2020.9154287
10.1109/ICASSP.2015.7178535
10.1007/springerreference_19840
10.1109/ACCESS.2019.2913185
10.1109/ICUFN.2018.8436824
10.1109/TVT.2019.2922668
10.1137/15M1048021
10.1109/JIOT.2019.2962715
10.1007/s00041-008-9045-x
10.1109/MCOM.2017.1600942
10.1109/TNET.2019.2895378
10.1109/MSP.2015.2481563
10.1109/LSP.2007.898300
10.1109/GLOCOM.2007.629
10.1109/MWC.2014.6757900
10.1109/JSAC.2018.2871310
10.1109/INFOCOM.2016.7524330
10.1017/CBO9780511804441
10.1109/TNSM.2021.3055174
10.1109/TVT.2022.3182899
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
H8D
L7M
DOI 10.1109/JSTSP.2021.3127796
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0484
EndPage 128
ExternalDocumentID 10_1109_JSTSP_2021_3127796
9613772
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: 1526434
– fundername: National Natural Science Foundation of China
  grantid: 61731018
  funderid: 10.13039/501100001809
– fundername: Guangdong Provincial Key Laboratory of Big Data Computation Theories and Methods
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
7SP
8FD
H8D
L7M
ID FETCH-LOGICAL-c295t-3c3aaa1b45c638ab135caad647c4a3d839a9c5c4a8ce67856047e47003d5e3793
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000753437600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-4553
IngestDate Sat Sep 06 14:31:35 EDT 2025
Tue Nov 18 22:33:10 EST 2025
Sat Nov 29 04:10:33 EST 2025
Wed Aug 27 02:49:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-3c3aaa1b45c638ab135caad647c4a3d839a9c5c4a8ce67856047e47003d5e3793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3995-914X
0000-0002-2653-943X
PQID 2626973089
PQPubID 75721
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_JSTSP_2021_3127796
crossref_primary_10_1109_JSTSP_2021_3127796
ieee_primary_9613772
proquest_journals_2626973089
PublicationCentury 2000
PublicationDate 2022-Jan.
2022-1-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of selected topics in signal processing
PublicationTitleAbbrev JSTSP
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
Razaviyayn (ref52) 2014; 27
ref14
ref53
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Jaggi (ref51) 2015
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref25
  doi: 10.1109/TCOMM.2018.2809724
– ident: ref5
  doi: 10.1109/MCOM.2017.1600920
– ident: ref24
  doi: 10.1109/TVT.2020.2985289
– ident: ref15
  doi: 10.1109/NetSoft48620.2020.9165512
– ident: ref27
  doi: 10.1109/TWC.2018.2859918
– ident: ref18
  doi: 10.1109/TVT.2019.2917426
– ident: ref13
  doi: 10.1109/JSAC.2020.2986898
– ident: ref4
  doi: 10.1109/ACCESS.2020.2975072
– ident: ref22
  doi: 10.1109/TBC.2020.3031742
– ident: ref38
  doi: 10.1016/s0076-5392(08)63022-2
– ident: ref39
  doi: 10.1109/IEEECONF53345.2021.9723177
– ident: ref55
  doi: 10.1109/TMC.2017.2752159
– ident: ref1
  doi: 10.1007/978-3-030-16170-5_2
– ident: ref8
  doi: 10.1109/TCOMM.2018.2868652
– ident: ref29
  doi: 10.1145/3127479.3129250
– ident: ref33
  doi: 10.1109/TVT.2019.2959193
– ident: ref46
  doi: 10.1109/ICASSP40776.2020.9054706
– ident: ref50
  doi: 10.1561/9781601984616
– ident: ref48
  doi: 10.1109/SPAWC48557.2020.9154281
– ident: ref2
  doi: 10.1109/TVT.2019.2924456
– ident: ref28
  doi: 10.1109/GLOCOM.2018.8647166
– ident: ref6
  doi: 10.1109/TNSM.2019.2899609
– ident: ref53
  doi: 10.1007/s10107-016-1057-8
– ident: ref30
  doi: 10.1016/j.jspi.2019.12.003
– volume: 27
  volume-title: Proc. Neural Inf. Process.
  year: 2014
  ident: ref52
  article-title: Parallel successive convex approximation for nonsmooth nonconvex optimization
– ident: ref17
  doi: 10.1109/IEEECONF51394.2020.9443543
– ident: ref21
  doi: 10.1109/TNSM.2020.3019248
– ident: ref32
  doi: 10.1109/ICASSP39728.2021.9413706
– ident: ref37
  doi: 10.1109/TIT.2015.2429611
– ident: ref7
  doi: 10.1109/MIC.2017.3481355
– ident: ref9
  doi: 10.1109/GLOCOM.2017.8254073
– ident: ref11
  doi: 10.1109/TNET.2017.2720668
– ident: ref19
  doi: 10.1109/TWC.2003.814353
– ident: ref42
  doi: 10.1137/120891009
– ident: ref40
  doi: 10.1109/SPAWC48557.2020.9154287
– ident: ref44
  doi: 10.1109/ICASSP.2015.7178535
– ident: ref43
  doi: 10.1007/springerreference_19840
– ident: ref14
  doi: 10.1109/ACCESS.2019.2913185
– ident: ref35
  doi: 10.1109/ICUFN.2018.8436824
– ident: ref34
  doi: 10.1109/TVT.2019.2922668
– ident: ref45
  doi: 10.1137/15M1048021
– ident: ref23
  doi: 10.1109/JIOT.2019.2962715
– ident: ref47
  doi: 10.1007/s00041-008-9045-x
– ident: ref3
  doi: 10.1109/MCOM.2017.1600942
– ident: ref12
  doi: 10.1109/TNET.2019.2895378
– ident: ref41
  doi: 10.1109/MSP.2015.2481563
– ident: ref36
  doi: 10.1109/LSP.2007.898300
– ident: ref20
  doi: 10.1109/GLOCOM.2007.629
– ident: ref54
  doi: 10.1109/MWC.2014.6757900
– volume-title: Proc. Neural Inf. Process.
  year: 2015
  ident: ref51
  article-title: On the global linear convergence of Frank-Wolfe optimization variants
– ident: ref26
  doi: 10.1109/JSAC.2018.2871310
– ident: ref10
  doi: 10.1109/INFOCOM.2016.7524330
– ident: ref31
  doi: 10.1017/CBO9780511804441
– ident: ref16
  doi: 10.1109/TNSM.2021.3055174
– ident: ref49
  doi: 10.1109/TVT.2022.3182899
SSID ssj0057614
Score 2.4062672
Snippet Network slicing to support multi-tenancy plays a key role in improving the performance of 5G and beyond networks. In this paper, we study dynamically slicing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113
SubjectTerms Algorithms
Approximation
Approximation algorithms
Costs
Expected utility
Group LASSO
multi-tenant network
Network slicing
Optimization
Quality of service
Reconfiguration
Regularization
Resource management
Signal processing algorithms
upper-bound minimization
Utilities
utility maximization
Title Data-Driven Adaptive Network Slicing for Multi-Tenant Networks
URI https://ieeexplore.ieee.org/document/9613772
https://www.proquest.com/docview/2626973089
Volume 16
WOSCitedRecordID wos000753437600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057614
  issn: 1932-4553
  databaseCode: RIE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61eNCDrypWq-zBm8buZpPN5iIUa_FUCq3Q2zKbzIogbenD32-S3S0FRfCWwwTCTGYyk5n5hpA75BqTIokoJkJSnkRAUwCkaHJQaVHkIiz8sAk5HKbTqRo1yMO2FwYRffEZPrqlz-Wbud64r7KuShw-njW4e1ImZa9WbXWt2xxVGWRGuRBx3SATqq694uORDQVZZCNUJqUD6N95hPxUlR-m2L8vg-P_neyEHFV-ZNArBX9KGjg7I4c76IIt8tSHNdD-0tmzoGdg4SxbMCzrvoPxp8upvwfWaQ18Fy6doCuKqQlW5-Rt8DJ5fqXVuASqmRJrGusYAKKcC22VCvIoFhrAJFxqDrGxnhAoLew6teKRqXV1uEQurVobgbHV0wvSnM1neEkCI3jBeYHSYMgjRFDMJJBrKRwce87aJKr5l-kKS9yNtPjMfEwRqszzPHM8zyqet8n9ds-iRNL4k7rluLylrBjcJp1aTFmlbKuM2aBMWUuVqqvfd12TA-a6FvzPSYc018sN3pB9_bX-WC1v_T36BpwYxV4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSwMxDA9jCuqD3-J06j34pnW7u_Z6fRHEORR1DJzg25FrcyKMKfvw77ft7oagCL71IYWSNGnSJL8AnBLXlBRJyCgRkvEkRJYiEiOTo0qLIhftwg-bkL1e-vKi-jU4X_TCEJEvPqMLt_S5fPOuZ-6rrKUSh49nDe6Sm5xVdmtVdtc6zmGZQ44YFyKuWmTaqmUv-VPfBoNRaGPUSEoH0f_tGfJzVX4YY__CdDf-d7ZNWC89yeBqLvotqNFoG9a-4QvuwGUHp8g6Y2fRgiuDH862Bb155XfwNHRZ9dfAuq2B78NlA3JlMRXBZBeeuzeD61tWDkxgOlJiymIdI2KYc6GtWmEexkIjmoRLzTE21hdCpYVdp1ZAMrXODpfEpVVsIyi2mroH9dH7iPYhMIIXnBckDbV5SIQqMgnmWgoHyJ5HDQgr_mW6RBN3Qy2GmY8q2irzPM8cz7OS5w04W-z5mGNp_Em947i8oCwZ3IBmJaasVLdJFtmwTFlblaqD33edwMrt4PEhe7jr3R_CauR6GPw_ShPq0_GMjmBZf07fJuNjf6e-ABJ6yKc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Adaptive+Network+Slicing+for+Multi-Tenant+Networks&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Reyhanian%2C+Navid&rft.au=Luo%2C+Zhi-Quan&rft.date=2022-01-01&rft.issn=1932-4553&rft.eissn=1941-0484&rft.volume=16&rft.issue=1&rft.spage=113&rft.epage=128&rft_id=info:doi/10.1109%2FJSTSP.2021.3127796&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTSP_2021_3127796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon