Data-Driven Adaptive Network Slicing for Multi-Tenant Networks
Network slicing to support multi-tenancy plays a key role in improving the performance of 5G and beyond networks. In this paper, we study dynamically slicing network resources in the backhaul and Radio Access Network (RAN) prior to user demand observations across multiple tenants, where each tenant...
Gespeichert in:
| Veröffentlicht in: | IEEE journal of selected topics in signal processing Jg. 16; H. 1; S. 113 - 128 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1932-4553, 1941-0484 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Network slicing to support multi-tenancy plays a key role in improving the performance of 5G and beyond networks. In this paper, we study dynamically slicing network resources in the backhaul and Radio Access Network (RAN) prior to user demand observations across multiple tenants, where each tenant owns and operates several slices to provide different services to users. In the proposed two time-scale scheme, a subset of network slices is activated via a novel sparse optimization framework in the long time-scale with the goal of maximizing the expected utilities of tenants while in the short time-scale the activated slices are reconfigured according to the time-varying user traffic and channel states. Specifically, using the statistics from users and channels and also considering the expected utility from serving users of a slice and the reconfiguration cost, we formulate a sparse optimization problem to update the configuration of a slice resources such that the maximum isolation of reserved resources is enforced. The formulated optimization problems for long and short time-scales are non-convex and difficult to solve. We use the <inline-formula><tex-math notation="LaTeX">\ell _q</tex-math></inline-formula>-norm, <inline-formula><tex-math notation="LaTeX">0< q< 1</tex-math></inline-formula>, and group LASSO regularizations to iteratively find convex approximations of the optimization problems. We propose a Frank-Wolfe algorithm to iteratively solve approximated problems in long time-scales. To cope with the dynamical nature of traffic variations, we propose a fast, distributed algorithm to solve the approximated optimization problems in short time-scales. Simulation results demonstrate the maximized tenant utilities from slice activation via our approach relative to the optimal solution. Moreover, we compare the maximized tenant utilities by our slice reconfiguration approach against the existing state-of-the-art method based on <inline-formula><tex-math notation="LaTeX">\ell _1</tex-math></inline-formula> regularization. |
|---|---|
| AbstractList | Network slicing to support multi-tenancy plays a key role in improving the performance of 5G and beyond networks. In this paper, we study dynamically slicing network resources in the backhaul and Radio Access Network (RAN) prior to user demand observations across multiple tenants, where each tenant owns and operates several slices to provide different services to users. In the proposed two time-scale scheme, a subset of network slices is activated via a novel sparse optimization framework in the long time-scale with the goal of maximizing the expected utilities of tenants while in the short time-scale the activated slices are reconfigured according to the time-varying user traffic and channel states. Specifically, using the statistics from users and channels and also considering the expected utility from serving users of a slice and the reconfiguration cost, we formulate a sparse optimization problem to update the configuration of a slice resources such that the maximum isolation of reserved resources is enforced. The formulated optimization problems for long and short time-scales are non-convex and difficult to solve. We use the [Formula Omitted]-norm, [Formula Omitted], and group LASSO regularizations to iteratively find convex approximations of the optimization problems. We propose a Frank-Wolfe algorithm to iteratively solve approximated problems in long time-scales. To cope with the dynamical nature of traffic variations, we propose a fast, distributed algorithm to solve the approximated optimization problems in short time-scales. Simulation results demonstrate the maximized tenant utilities from slice activation via our approach relative to the optimal solution. Moreover, we compare the maximized tenant utilities by our slice reconfiguration approach against the existing state-of-the-art method based on [Formula Omitted] regularization. Network slicing to support multi-tenancy plays a key role in improving the performance of 5G and beyond networks. In this paper, we study dynamically slicing network resources in the backhaul and Radio Access Network (RAN) prior to user demand observations across multiple tenants, where each tenant owns and operates several slices to provide different services to users. In the proposed two time-scale scheme, a subset of network slices is activated via a novel sparse optimization framework in the long time-scale with the goal of maximizing the expected utilities of tenants while in the short time-scale the activated slices are reconfigured according to the time-varying user traffic and channel states. Specifically, using the statistics from users and channels and also considering the expected utility from serving users of a slice and the reconfiguration cost, we formulate a sparse optimization problem to update the configuration of a slice resources such that the maximum isolation of reserved resources is enforced. The formulated optimization problems for long and short time-scales are non-convex and difficult to solve. We use the <inline-formula><tex-math notation="LaTeX">\ell _q</tex-math></inline-formula>-norm, <inline-formula><tex-math notation="LaTeX">0< q< 1</tex-math></inline-formula>, and group LASSO regularizations to iteratively find convex approximations of the optimization problems. We propose a Frank-Wolfe algorithm to iteratively solve approximated problems in long time-scales. To cope with the dynamical nature of traffic variations, we propose a fast, distributed algorithm to solve the approximated optimization problems in short time-scales. Simulation results demonstrate the maximized tenant utilities from slice activation via our approach relative to the optimal solution. Moreover, we compare the maximized tenant utilities by our slice reconfiguration approach against the existing state-of-the-art method based on <inline-formula><tex-math notation="LaTeX">\ell _1</tex-math></inline-formula> regularization. |
| Author | Reyhanian, Navid Luo, Zhi-Quan |
| Author_xml | – sequence: 1 givenname: Navid orcidid: 0000-0002-2653-943X surname: Reyhanian fullname: Reyhanian, Navid email: navid@umn.edu organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA – sequence: 2 givenname: Zhi-Quan orcidid: 0000-0003-3995-914X surname: Luo fullname: Luo, Zhi-Quan email: luozq@cuhk.edu.cn organization: Shenzhen Research Institute of Big Data and The Chinese University of Hong Kong, Shenzhen, China |
| BookMark | eNp9kEtPAjEUhRuDiYD-Ad1M4nqw7043JgR8Bh8JuG4unWKK2MFO0fjvnRF04cLVPYvz3ZN8PdQJVXAIHRM8IATrs9vpbPo4oJiSASNUKS33UJdoTnLMC95pM6M5F4IdoF5dLzEWShLeRedjSJCPo393IRuWsE5Nyu5d-qjiSzZdeevDc7aoYna3WSWfz1yAkH4K9SHaX8Cqdke720dPlxez0XU-ebi6GQ0nuaVapJxZBgBkzoWVrIA5YcIClJIry4GVBdOgrWhyYZ1UhZCYK8cVxqwUjinN-uh0-3cdq7eNq5NZVpsYmklDJZVaMVy0Lbpt2VjVdXQLs47-FeKnIdi0nsy3J9N6MjtPDVT8gaxPkHwVUgS_-h892aLeOfe7pSVhSlH2BVe-dyc |
| CODEN | IJSTGY |
| CitedBy_id | crossref_primary_10_1109_TVT_2022_3182899 crossref_primary_10_1109_COMST_2023_3249835 crossref_primary_10_1109_COMST_2024_3390613 crossref_primary_10_1109_TNSM_2024_3351669 crossref_primary_10_1109_TNSM_2023_3332509 crossref_primary_10_3390_s23135989 crossref_primary_10_1109_JSTSP_2023_3343626 crossref_primary_10_3390_s24175558 |
| Cites_doi | 10.1109/TCOMM.2018.2809724 10.1109/MCOM.2017.1600920 10.1109/TVT.2020.2985289 10.1109/NetSoft48620.2020.9165512 10.1109/TWC.2018.2859918 10.1109/TVT.2019.2917426 10.1109/JSAC.2020.2986898 10.1109/ACCESS.2020.2975072 10.1109/TBC.2020.3031742 10.1016/s0076-5392(08)63022-2 10.1109/IEEECONF53345.2021.9723177 10.1109/TMC.2017.2752159 10.1007/978-3-030-16170-5_2 10.1109/TCOMM.2018.2868652 10.1145/3127479.3129250 10.1109/TVT.2019.2959193 10.1109/ICASSP40776.2020.9054706 10.1561/9781601984616 10.1109/SPAWC48557.2020.9154281 10.1109/TVT.2019.2924456 10.1109/GLOCOM.2018.8647166 10.1109/TNSM.2019.2899609 10.1007/s10107-016-1057-8 10.1016/j.jspi.2019.12.003 10.1109/IEEECONF51394.2020.9443543 10.1109/TNSM.2020.3019248 10.1109/ICASSP39728.2021.9413706 10.1109/TIT.2015.2429611 10.1109/MIC.2017.3481355 10.1109/GLOCOM.2017.8254073 10.1109/TNET.2017.2720668 10.1109/TWC.2003.814353 10.1137/120891009 10.1109/SPAWC48557.2020.9154287 10.1109/ICASSP.2015.7178535 10.1007/springerreference_19840 10.1109/ACCESS.2019.2913185 10.1109/ICUFN.2018.8436824 10.1109/TVT.2019.2922668 10.1137/15M1048021 10.1109/JIOT.2019.2962715 10.1007/s00041-008-9045-x 10.1109/MCOM.2017.1600942 10.1109/TNET.2019.2895378 10.1109/MSP.2015.2481563 10.1109/LSP.2007.898300 10.1109/GLOCOM.2007.629 10.1109/MWC.2014.6757900 10.1109/JSAC.2018.2871310 10.1109/INFOCOM.2016.7524330 10.1017/CBO9780511804441 10.1109/TNSM.2021.3055174 10.1109/TVT.2022.3182899 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD H8D L7M |
| DOI | 10.1109/JSTSP.2021.3127796 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0484 |
| EndPage | 128 |
| ExternalDocumentID | 10_1109_JSTSP_2021_3127796 9613772 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF grantid: 1526434 – fundername: National Natural Science Foundation of China grantid: 61731018 funderid: 10.13039/501100001809 – fundername: Guangdong Provincial Key Laboratory of Big Data Computation Theories and Methods |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX CITATION 7SP 8FD H8D L7M |
| ID | FETCH-LOGICAL-c295t-3c3aaa1b45c638ab135caad647c4a3d839a9c5c4a8ce67856047e47003d5e3793 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000753437600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-4553 |
| IngestDate | Sat Sep 06 14:31:35 EDT 2025 Tue Nov 18 22:33:10 EST 2025 Sat Nov 29 04:10:33 EST 2025 Wed Aug 27 02:49:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-3c3aaa1b45c638ab135caad647c4a3d839a9c5c4a8ce67856047e47003d5e3793 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3995-914X 0000-0002-2653-943X |
| PQID | 2626973089 |
| PQPubID | 75721 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSTSP_2021_3127796 crossref_primary_10_1109_JSTSP_2021_3127796 ieee_primary_9613772 proquest_journals_2626973089 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Jan. 2022-1-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE journal of selected topics in signal processing |
| PublicationTitleAbbrev | JSTSP |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 Razaviyayn (ref52) 2014; 27 ref14 ref53 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Jaggi (ref51) 2015 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref25 doi: 10.1109/TCOMM.2018.2809724 – ident: ref5 doi: 10.1109/MCOM.2017.1600920 – ident: ref24 doi: 10.1109/TVT.2020.2985289 – ident: ref15 doi: 10.1109/NetSoft48620.2020.9165512 – ident: ref27 doi: 10.1109/TWC.2018.2859918 – ident: ref18 doi: 10.1109/TVT.2019.2917426 – ident: ref13 doi: 10.1109/JSAC.2020.2986898 – ident: ref4 doi: 10.1109/ACCESS.2020.2975072 – ident: ref22 doi: 10.1109/TBC.2020.3031742 – ident: ref38 doi: 10.1016/s0076-5392(08)63022-2 – ident: ref39 doi: 10.1109/IEEECONF53345.2021.9723177 – ident: ref55 doi: 10.1109/TMC.2017.2752159 – ident: ref1 doi: 10.1007/978-3-030-16170-5_2 – ident: ref8 doi: 10.1109/TCOMM.2018.2868652 – ident: ref29 doi: 10.1145/3127479.3129250 – ident: ref33 doi: 10.1109/TVT.2019.2959193 – ident: ref46 doi: 10.1109/ICASSP40776.2020.9054706 – ident: ref50 doi: 10.1561/9781601984616 – ident: ref48 doi: 10.1109/SPAWC48557.2020.9154281 – ident: ref2 doi: 10.1109/TVT.2019.2924456 – ident: ref28 doi: 10.1109/GLOCOM.2018.8647166 – ident: ref6 doi: 10.1109/TNSM.2019.2899609 – ident: ref53 doi: 10.1007/s10107-016-1057-8 – ident: ref30 doi: 10.1016/j.jspi.2019.12.003 – volume: 27 volume-title: Proc. Neural Inf. Process. year: 2014 ident: ref52 article-title: Parallel successive convex approximation for nonsmooth nonconvex optimization – ident: ref17 doi: 10.1109/IEEECONF51394.2020.9443543 – ident: ref21 doi: 10.1109/TNSM.2020.3019248 – ident: ref32 doi: 10.1109/ICASSP39728.2021.9413706 – ident: ref37 doi: 10.1109/TIT.2015.2429611 – ident: ref7 doi: 10.1109/MIC.2017.3481355 – ident: ref9 doi: 10.1109/GLOCOM.2017.8254073 – ident: ref11 doi: 10.1109/TNET.2017.2720668 – ident: ref19 doi: 10.1109/TWC.2003.814353 – ident: ref42 doi: 10.1137/120891009 – ident: ref40 doi: 10.1109/SPAWC48557.2020.9154287 – ident: ref44 doi: 10.1109/ICASSP.2015.7178535 – ident: ref43 doi: 10.1007/springerreference_19840 – ident: ref14 doi: 10.1109/ACCESS.2019.2913185 – ident: ref35 doi: 10.1109/ICUFN.2018.8436824 – ident: ref34 doi: 10.1109/TVT.2019.2922668 – ident: ref45 doi: 10.1137/15M1048021 – ident: ref23 doi: 10.1109/JIOT.2019.2962715 – ident: ref47 doi: 10.1007/s00041-008-9045-x – ident: ref3 doi: 10.1109/MCOM.2017.1600942 – ident: ref12 doi: 10.1109/TNET.2019.2895378 – ident: ref41 doi: 10.1109/MSP.2015.2481563 – ident: ref36 doi: 10.1109/LSP.2007.898300 – ident: ref20 doi: 10.1109/GLOCOM.2007.629 – ident: ref54 doi: 10.1109/MWC.2014.6757900 – volume-title: Proc. Neural Inf. Process. year: 2015 ident: ref51 article-title: On the global linear convergence of Frank-Wolfe optimization variants – ident: ref26 doi: 10.1109/JSAC.2018.2871310 – ident: ref10 doi: 10.1109/INFOCOM.2016.7524330 – ident: ref31 doi: 10.1017/CBO9780511804441 – ident: ref16 doi: 10.1109/TNSM.2021.3055174 – ident: ref49 doi: 10.1109/TVT.2022.3182899 |
| SSID | ssj0057614 |
| Score | 2.4062672 |
| Snippet | Network slicing to support multi-tenancy plays a key role in improving the performance of 5G and beyond networks. In this paper, we study dynamically slicing... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113 |
| SubjectTerms | Algorithms Approximation Approximation algorithms Costs Expected utility Group LASSO multi-tenant network Network slicing Optimization Quality of service Reconfiguration Regularization Resource management Signal processing algorithms upper-bound minimization Utilities utility maximization |
| Title | Data-Driven Adaptive Network Slicing for Multi-Tenant Networks |
| URI | https://ieeexplore.ieee.org/document/9613772 https://www.proquest.com/docview/2626973089 |
| Volume | 16 |
| WOSCitedRecordID | wos000753437600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057614 issn: 1932-4553 databaseCode: RIE dateStart: 20070101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61eNCDrypWq-zBm8buZpPN5iIUa_FUCq3Q2zKbzIogbenD32-S3S0FRfCWwwTCTGYyk5n5hpA75BqTIokoJkJSnkRAUwCkaHJQaVHkIiz8sAk5HKbTqRo1yMO2FwYRffEZPrqlz-Wbud64r7KuShw-njW4e1ImZa9WbXWt2xxVGWRGuRBx3SATqq694uORDQVZZCNUJqUD6N95hPxUlR-m2L8vg-P_neyEHFV-ZNArBX9KGjg7I4c76IIt8tSHNdD-0tmzoGdg4SxbMCzrvoPxp8upvwfWaQ18Fy6doCuKqQlW5-Rt8DJ5fqXVuASqmRJrGusYAKKcC22VCvIoFhrAJFxqDrGxnhAoLew6teKRqXV1uEQurVobgbHV0wvSnM1neEkCI3jBeYHSYMgjRFDMJJBrKRwce87aJKr5l-kKS9yNtPjMfEwRqszzPHM8zyqet8n9ds-iRNL4k7rluLylrBjcJp1aTFmlbKuM2aBMWUuVqqvfd12TA-a6FvzPSYc018sN3pB9_bX-WC1v_T36BpwYxV4 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSwMxDA9jCuqD3-J06j34pnW7u_Z6fRHEORR1DJzg25FrcyKMKfvw77ft7oagCL71IYWSNGnSJL8AnBLXlBRJyCgRkvEkRJYiEiOTo0qLIhftwg-bkL1e-vKi-jU4X_TCEJEvPqMLt_S5fPOuZ-6rrKUSh49nDe6Sm5xVdmtVdtc6zmGZQ44YFyKuWmTaqmUv-VPfBoNRaGPUSEoH0f_tGfJzVX4YY__CdDf-d7ZNWC89yeBqLvotqNFoG9a-4QvuwGUHp8g6Y2fRgiuDH862Bb155XfwNHRZ9dfAuq2B78NlA3JlMRXBZBeeuzeD61tWDkxgOlJiymIdI2KYc6GtWmEexkIjmoRLzTE21hdCpYVdp1ZAMrXODpfEpVVsIyi2mroH9dH7iPYhMIIXnBckDbV5SIQqMgnmWgoHyJ5HDQgr_mW6RBN3Qy2GmY8q2irzPM8cz7OS5w04W-z5mGNp_Em947i8oCwZ3IBmJaasVLdJFtmwTFlblaqD33edwMrt4PEhe7jr3R_CauR6GPw_ShPq0_GMjmBZf07fJuNjf6e-ABJ6yKc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Adaptive+Network+Slicing+for+Multi-Tenant+Networks&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Reyhanian%2C+Navid&rft.au=Luo%2C+Zhi-Quan&rft.date=2022-01-01&rft.issn=1932-4553&rft.eissn=1941-0484&rft.volume=16&rft.issue=1&rft.spage=113&rft.epage=128&rft_id=info:doi/10.1109%2FJSTSP.2021.3127796&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTSP_2021_3127796 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon |