Anomaly Detection for Solder Joints Using β-VAE

In the assembly process of printed circuit boards (PCBs), most of the errors are caused by solder joints in surface mount devices (SMDs). In the literature, traditional feature extraction-based methods require designing hand-crafted features and rely on the tiered red green blue (RGB) illumination t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on components, packaging, and manufacturing technology (2011) Vol. 11; no. 12; pp. 2214 - 2221
Main Authors: Ulger, Furkan, Yuksel, Seniha Esen, Yilmaz, Atila
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2156-3950, 2156-3985
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the assembly process of printed circuit boards (PCBs), most of the errors are caused by solder joints in surface mount devices (SMDs). In the literature, traditional feature extraction-based methods require designing hand-crafted features and rely on the tiered red green blue (RGB) illumination to detect solder joint errors, whereas the supervised convolutional neural network (CNN)-based approaches require a lot of labeled abnormal samples (defective solder joints) to achieve high accuracy. To solve the optical inspection problem in unrestricted environments with no special lighting and without the existence of error-free reference boards, we propose a new beta-variational autoencoder (beta-VAE) architecture for anomaly detection that can work on both integrated circuit (IC) and non-IC components. We show that the proposed model learns disentangled representation of data, leading to more independent features and improved latent space representations. We compare the activation and gradient-based representations that are used to characterize anomalies and observe the effect of different beta parameters on accuracy and untwining the feature representations in beta-VAE. Finally, we show that anomalies on solder joints can be detected with high accuracy via a model trained directly on normal samples without designated hardware or feature engineering.
AbstractList In the assembly process of printed circuit boards (PCBs), most of the errors are caused by solder joints in surface mount devices (SMDs). In the literature, traditional feature extraction-based methods require designing hand-crafted features and rely on the tiered red green blue (RGB) illumination to detect solder joint errors, whereas the supervised convolutional neural network (CNN)-based approaches require a lot of labeled abnormal samples (defective solder joints) to achieve high accuracy. To solve the optical inspection problem in unrestricted environments with no special lighting and without the existence of error-free reference boards, we propose a new beta-variational autoencoder (beta-VAE) architecture for anomaly detection that can work on both integrated circuit (IC) and non-IC components. We show that the proposed model learns disentangled representation of data, leading to more independent features and improved latent space representations. We compare the activation and gradient-based representations that are used to characterize anomalies and observe the effect of different beta parameters on accuracy and untwining the feature representations in beta-VAE. Finally, we show that anomalies on solder joints can be detected with high accuracy via a model trained directly on normal samples without designated hardware or feature engineering.
Author Ulger, Furkan
Yuksel, Seniha Esen
Yilmaz, Atila
Author_xml – sequence: 1
  givenname: Furkan
  orcidid: 0000-0002-5935-2743
  surname: Ulger
  fullname: Ulger, Furkan
  email: furkan.ulger@stu.ee.hacettepe.edu.tr
  organization: Department of Electrical and Electronics Engineering, Hacettepe University, Ankara, Turkey
– sequence: 2
  givenname: Seniha Esen
  orcidid: 0000-0002-8868-1132
  surname: Yuksel
  fullname: Yuksel, Seniha Esen
  email: eyuksel@ee.hacettepe.edu.tr
  organization: Department of Electrical and Electronics Engineering, Hacettepe University, Ankara, Turkey
– sequence: 3
  givenname: Atila
  surname: Yilmaz
  fullname: Yilmaz, Atila
  email: ayilmaz@ee.hacettepe.edu.tr
  organization: Department of Electrical and Electronics Engineering, Hacettepe University, Ankara, Turkey
BookMark eNp9kL9OwzAQhy1UJErpC8ASiTnhzo7tZKxK-acikGhZLTexUao0LnY69LV4EJ6JlFYdGLjlbvh9d7rvnPQa1xhCLhESRMhvZuPX51lCgWLCkCIV_IT0KXIRszzjvePM4YwMQ1hCVzwDCaxPYNS4la630a1pTdFWroms89Gbq0vjoydXNW2I5qFqPqLvr_h9NLkgp1bXwQwPfUDmd5PZ-CGevtw_jkfTuKA5b2NWMKlxUepUC2FQC85oYQqpWYmZTXMLCCkHhsLK0pbGMrZITQmS2iwHsGxArvd71959bkxo1dJtfNOdVFQgoERJRZfK9qnCuxC8saqoWr17o_W6qhWC2ilSv4rUTpE6KOpQ-gdd-2ql_fZ_6GoPVcaYI5BzmaeUsR_denKX
CODEN ITCPC8
CitedBy_id crossref_primary_10_3390_e25020268
crossref_primary_10_1007_s00170_025_15383_4
crossref_primary_10_1109_TCPMT_2022_3224997
crossref_primary_10_3389_frobt_2025_1554196
crossref_primary_10_1109_TIM_2023_3277935
crossref_primary_10_1016_j_media_2024_103229
crossref_primary_10_1007_s00170_025_15460_8
crossref_primary_10_3390_asi7010011
crossref_primary_10_1088_1361_6501_ac769a
crossref_primary_10_3390_s24030738
crossref_primary_10_1016_j_addma_2024_104635
crossref_primary_10_1177_09544070251319563
crossref_primary_10_3390_bioengineering10060683
crossref_primary_10_1007_s10796_024_10507_9
crossref_primary_10_1016_j_measurement_2025_117443
crossref_primary_10_1007_s10015_025_01028_y
crossref_primary_10_1007_s10489_025_06449_7
crossref_primary_10_3389_fmtec_2024_1277152
crossref_primary_10_1016_j_measurement_2024_116392
crossref_primary_10_3390_machines12090603
Cites_doi 10.1109/TPAMI.2013.50
10.1109/TCPMT.2018.2789453
10.1109/TCPMT.2012.2231902
10.1007/s00170-006-0730-0
10.1126/science.1127647
10.1016/j.aei.2019.100933
10.1109/34.3902
10.23919/SPA.2019.8936659
10.1109/6104.846932
10.1007/978-3-030-32251-9_32
10.1109/TCPMT.2011.2168531
10.1016/j.rcim.2014.03.003
10.1007/s00170-018-3022-6
10.1016/j.aei.2019.101004
10.5772/51699
10.1006/cviu.1996.0020
10.1016/S0031-3203(98)00103-4
10.1117/1.JEI.29.4.041013
10.1109/TCPMT.2011.2118208
10.1016/j.rcim.2011.03.007
10.1007/978-3-030-58589-1_13
10.1109/TII.2006.877265
10.1145/3383261
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1109/TCPMT.2021.3121265
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList
Engineering Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2156-3985
EndPage 2221
ExternalDocumentID 10_1109_TCPMT_2021_3121265
9579423
Genre orig-research
GrantInformation_xml – fundername: Aselsan Inc., through a project between Hacettepe University and Aselsan Inc
  funderid: 10.13039/501100007276
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
RIA
RIE
RNS
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c295t-3c37a1bda4a66e1a6532cec7a3d18f49f010450316f7dfdef33b4ed072f8900f3
IEDL.DBID RIE
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000730529000024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2156-3950
IngestDate Mon Jun 30 10:07:33 EDT 2025
Tue Nov 18 22:38:30 EST 2025
Sat Nov 29 06:08:13 EST 2025
Wed Aug 27 05:07:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-3c37a1bda4a66e1a6532cec7a3d18f49f010450316f7dfdef33b4ed072f8900f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5935-2743
0000-0002-8868-1132
PQID 2610171726
PQPubID 1006342
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_TCPMT_2021_3121265
crossref_primary_10_1109_TCPMT_2021_3121265
ieee_primary_9579423
proquest_journals_2610171726
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on components, packaging, and manufacturing technology (2011)
PublicationTitleAbbrev TCPMT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References kingma (ref34) 2014
wu (ref10) 2008
ref12
ref15
zong (ref23) 2018
ref30
ref11
lu (ref31) 2020; 2020
ref2
kingma (ref4) 2013
ref1
ref17
ref16
ioffe (ref33) 2015
ref19
ref18
van der maaten (ref35) 2008; 9
ko (ref14) 2000; 23
ref24
lu (ref26) 2018
ref25
ref20
ref22
ref21
wu (ref13) 2011; 1
wada (ref32) 2016
ref28
ref27
ref8
rezende (ref5) 2014
ref7
boracchi (ref29) 2020
ref9
ref6
higgins (ref3) 2017
References_xml – ident: ref6
  doi: 10.1109/TPAMI.2013.50
– ident: ref21
  doi: 10.1109/TCPMT.2018.2789453
– ident: ref9
  doi: 10.1109/TCPMT.2012.2231902
– start-page: 1
  year: 2018
  ident: ref23
  article-title: Deep autoencoding Gaussian mixture model for unsupervised anomaly detection
  publication-title: Proc ICLR
– ident: ref15
  doi: 10.1007/s00170-006-0730-0
– ident: ref30
  doi: 10.1126/science.1127647
– year: 2013
  ident: ref4
  article-title: Auto-encoding variational Bayes
  publication-title: arXiv 1312 6114
– year: 2016
  ident: ref32
  publication-title: Labelme Image Polygonal Annotation with Python
– ident: ref22
  doi: 10.1016/j.aei.2019.100933
– year: 2018
  ident: ref26
  article-title: Anomaly detection for skin disease images using variational autoencoder
  publication-title: arXiv 1807 01349
– start-page: 1
  year: 2017
  ident: ref3
  article-title: Beta-VAE: Learning basic visual concepts with a constrained variational framework
  publication-title: Proc ICLR
– ident: ref19
  doi: 10.1109/34.3902
– ident: ref17
  doi: 10.23919/SPA.2019.8936659
– volume: 23
  start-page: 93
  year: 2000
  ident: ref14
  article-title: Solder joints inspection using a neural network and fuzzy rule-based classification method
  publication-title: IEEE Trans Electron Packag Manuf
  doi: 10.1109/6104.846932
– ident: ref27
  doi: 10.1007/978-3-030-32251-9_32
– ident: ref8
  doi: 10.1109/TCPMT.2011.2168531
– ident: ref11
  doi: 10.1016/j.rcim.2014.03.003
– ident: ref12
  doi: 10.1007/s00170-018-3022-6
– start-page: 91
  year: 2020
  ident: ref29
  article-title: Tutorial: Anomaly detection in images
  publication-title: Proc IEEE ICIP
– volume: 2020
  start-page: 366
  year: 2020
  ident: ref31
  article-title: FICS-PCB: A multi-modal image dataset for automated printed circuit board visual inspection
  publication-title: IACR Cryptol ePrint Arch
– ident: ref20
  doi: 10.1016/j.aei.2019.101004
– ident: ref2
  doi: 10.5772/51699
– ident: ref1
  doi: 10.1006/cviu.1996.0020
– ident: ref7
  doi: 10.1016/S0031-3203(98)00103-4
– ident: ref24
  doi: 10.1117/1.JEI.29.4.041013
– start-page: 240
  year: 2008
  ident: ref10
  article-title: An AOI algorithm for PCB based on feature extraction
  publication-title: Proc 7th World Congr Intell Control Autom
– start-page: 448
  year: 2015
  ident: ref33
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc Int Conf Mach Learn
– volume: 1
  start-page: 689
  year: 2011
  ident: ref13
  article-title: Feature-extraction-based inspection algorithm for IC solder joints
  publication-title: IEEE Trans Compon Packag Manuf Technol
  doi: 10.1109/TCPMT.2011.2118208
– ident: ref18
  doi: 10.1016/j.rcim.2011.03.007
– ident: ref28
  doi: 10.1007/978-3-030-58589-1_13
– start-page: 1278
  year: 2014
  ident: ref5
  article-title: Stochastic backpropagation and approximate inference in deep generative models
  publication-title: Proc Int Conf Mach Learn
– year: 2014
  ident: ref34
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref16
  doi: 10.1109/TII.2006.877265
– ident: ref25
  doi: 10.1145/3383261
– volume: 9
  start-page: 2580
  year: 2008
  ident: ref35
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
SSID ssj0000580703
Score 2.4375315
Snippet In the assembly process of printed circuit boards (PCBs), most of the errors are caused by solder joints in surface mount devices (SMDs). In the literature,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2214
SubjectTerms <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">β -variational autoencoder (VAE)
Accuracy
Anomalies
Anomaly detection
Artificial neural networks
automated optical inspection (AOI)
Automatic optical inspection
Circuit boards
Errors
Feature extraction
Illumination
Inspection
Integrated circuits
Model accuracy
Representations
solder joint inspection (SJI)
Soldered joints
Soldering
Solders
Surface-mounted devices
Training
unsupervised anomaly detection
VAE
Title Anomaly Detection for Solder Joints Using β-VAE
URI https://ieeexplore.ieee.org/document/9579423
https://www.proquest.com/docview/2610171726
Volume 11
WOSCitedRecordID wos000730529000024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2156-3985
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000580703
  issn: 2156-3950
  databaseCode: RIE
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL1M8UEf_JridEoffNO4tFma5nHMDREUwSl7K1l6A4J2slXBv-UP8TeZpF0ZKIJvpSSlnJubm5Pc3ANwat8y638RQY4J6XKFRAljSMiV5CyzMTujXmxC3N4m47G8a8B5fRcGEX3yGV64R3-Wn031m9sq67gjJRv-V2BFiLi8q1Xvp1CeuNHrtOQsJSFMcrq4I0NlZ9S_uxlZNhiFlqTa2drFkqU45IVVfszGPsQMt_73c9uwWS0lg15p-x1oYL4LG0sFBptALbt_Uc8fwSUWPucqD-wiNbifOm3u4Hr6lBfzwGcNBF-f5LE32IOH4WDUvyKVRgLRkeQFYZoJFU4y1VVxjKGKOYs0aqFYFiamK43jW9x6bmxEZjI0jE26mFERmURSatg-rObTHA8gQD1hSmkTRtZ8oWLKGMoMWg9nOk5i2YJwgViqqwLiTsfiOfVEgsrUo5w6lNMK5Rac1X1ey_IZf7ZuOlzrlhWkLWgvDJNWHjZPLfNzpX5EFB_-3usI1t23y9STNqwWszc8hjX9XjzNZyd-8HwDV_DANQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL3oFNQHv8Xp1D74pnFp07TNo-iGH9sQnLK3kqU3MNBOXCf4t_wh_iaTrBuCIvhWSkLLubm5OcnNPQDH5i0z_hcQ5JiQkEskMtaa-FwKzjITszPqxCbiTifp9cTdHJzO7sIgoks-wzP76M7ys6Ea262yuj1SMuF_HhZ4GAZ0cltrtqNCeWLHr1WTM6SEMMHp9JYMFfXuxV27a_hg4BuaauZrG02-RSInrfJjPnZBprn2v99bh9VyMemdT6y_AXOYb8LKtxKDW0ANv3-WT-_eJRYu6yr3zDLVux9adW7vZjjIi5Hn8ga8zw_yeN7Yhodmo3txRUqVBKICwQvCFIul389kKKMIfRlxFihUsWSZn-hQaMu4uPHdSMeZzlAz1g8xo3GgE0GpZjtQyYc57oKHqs-kVNoPjAF9yaTWlGk0Ps5UlESiCv4UsVSVJcStksVT6qgEFalDObUopyXKVTiZ9XmZFND4s_WWxXXWsoS0CrWpYdLSx0ap4X622E8cRHu_9zqCpatuu5W2rju3-7BsvzNJRKlBpXgd4wEsqrdiMHo9dAPpC4YZw3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+Detection+for+Solder+Joints+Using+%CE%B2+-VAE&rft.jtitle=IEEE+transactions+on+components%2C+packaging%2C+and+manufacturing+technology+%282011%29&rft.au=Ulger%2C+Furkan&rft.au=Yuksel%2C+Seniha+Esen&rft.au=Yilmaz%2C+Atila&rft.date=2021-12-01&rft.issn=2156-3950&rft.eissn=2156-3985&rft.volume=11&rft.issue=12&rft.spage=2214&rft.epage=2221&rft_id=info:doi/10.1109%2FTCPMT.2021.3121265&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCPMT_2021_3121265
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-3950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-3950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-3950&client=summon