The approximation property for spaces of holomorphic functions on infinite-dimensional spaces I

For an open subset U of a locally convex space E, let ( H( U), τ 0) denote the vector space of all holomorphic functions on U, with the compact-open topology. If E is a separable Fréchet space with the bounded approximation property, or if E is a (DFC)-space with the approximation property, we show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of approximation theory Jg. 126; H. 2; S. 141 - 156
Hauptverfasser: Dineen, Seán, Mujica, Jorge
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.02.2004
Schlagworte:
ISSN:0021-9045, 1096-0430
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For an open subset U of a locally convex space E, let ( H( U), τ 0) denote the vector space of all holomorphic functions on U, with the compact-open topology. If E is a separable Fréchet space with the bounded approximation property, or if E is a (DFC)-space with the approximation property, we show that ( H( U), τ 0) has the approximation property for every open subset U of E. These theorems extend classical results of Aron and Schottenloher. As applications of these approximation theorems we characterize the spectra of certain topological algebras of holomorphic mappings with values in a Banach algebra.
ISSN:0021-9045
1096-0430
DOI:10.1016/j.jat.2004.01.008