The approximation property for spaces of holomorphic functions on infinite-dimensional spaces I

For an open subset U of a locally convex space E, let ( H( U), τ 0) denote the vector space of all holomorphic functions on U, with the compact-open topology. If E is a separable Fréchet space with the bounded approximation property, or if E is a (DFC)-space with the approximation property, we show...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of approximation theory Ročník 126; číslo 2; s. 141 - 156
Hlavní autoři: Dineen, Seán, Mujica, Jorge
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.02.2004
Témata:
ISSN:0021-9045, 1096-0430
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:For an open subset U of a locally convex space E, let ( H( U), τ 0) denote the vector space of all holomorphic functions on U, with the compact-open topology. If E is a separable Fréchet space with the bounded approximation property, or if E is a (DFC)-space with the approximation property, we show that ( H( U), τ 0) has the approximation property for every open subset U of E. These theorems extend classical results of Aron and Schottenloher. As applications of these approximation theorems we characterize the spectra of certain topological algebras of holomorphic mappings with values in a Banach algebra.
ISSN:0021-9045
1096-0430
DOI:10.1016/j.jat.2004.01.008