An Efficient FPGA Implementation of Orthogonal Matching Pursuit With Square-Root-Free QR Decomposition

Compressive sensing (CS) is a novel signal processing technology to reconstruct the sparse signal at sub-Nyquist rate. Orthogonal matching pursuit (OMP) is one of the most widely used signal reconstruction algorithms. However, the least square problem (LSP) in OMP algorithm limits its performance. T...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on very large scale integration (VLSI) systems Ročník 27; číslo 3; s. 611 - 623
Hlavní autoři: Ge, Xiang, Yang, Fan, Zhu, Hengliang, Zeng, Xuan, Zhou, Dian
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1063-8210, 1557-9999
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Compressive sensing (CS) is a novel signal processing technology to reconstruct the sparse signal at sub-Nyquist rate. Orthogonal matching pursuit (OMP) is one of the most widely used signal reconstruction algorithms. However, the least square problem (LSP) in OMP algorithm limits its performance. This paper presents a fast CS reconstruction algorithm implemented on field-programmable gate array (FPGA) using OMP. The proposed algorithm adopts an incremental QR decomposition (QRD) method to efficiently solve the LSP. The incremental QRD is further optimized to eliminate the square root operation to facilitate hardware implementation. The proposed architecture avoiding the complex square root unit mainly consists of some more basic computing units, where the computing process is broken down into several simple operations to map to the corresponding hardware for pipelining. The proposed implementation based on Xilinx Kintex-7 FPGA exploits the parallelism by a well-planned workload schedule and reaches an optimal tradeoff between the latency and frequency. The experimental results demonstrate that the proposed architecture can run at a frequency of 210 MHz with a reconstruction time of 238 <inline-formula> <tex-math notation="LaTeX">\mu \text{s} </tex-math></inline-formula> for 36-sparse 1024-length signal, which improves the signal reconstruction speed by <inline-formula> <tex-math notation="LaTeX">1.43\times </tex-math></inline-formula> compared to the state-of-the-art implementations.
AbstractList Compressive sensing (CS) is a novel signal processing technology to reconstruct the sparse signal at sub-Nyquist rate. Orthogonal matching pursuit (OMP) is one of the most widely used signal reconstruction algorithms. However, the least square problem (LSP) in OMP algorithm limits its performance. This paper presents a fast CS reconstruction algorithm implemented on field-programmable gate array (FPGA) using OMP. The proposed algorithm adopts an incremental QR decomposition (QRD) method to efficiently solve the LSP. The incremental QRD is further optimized to eliminate the square root operation to facilitate hardware implementation. The proposed architecture avoiding the complex square root unit mainly consists of some more basic computing units, where the computing process is broken down into several simple operations to map to the corresponding hardware for pipelining. The proposed implementation based on Xilinx Kintex-7 FPGA exploits the parallelism by a well-planned workload schedule and reaches an optimal tradeoff between the latency and frequency. The experimental results demonstrate that the proposed architecture can run at a frequency of 210 MHz with a reconstruction time of 238 [Formula Omitted] for 36-sparse 1024-length signal, which improves the signal reconstruction speed by [Formula Omitted] compared to the state-of-the-art implementations.
Compressive sensing (CS) is a novel signal processing technology to reconstruct the sparse signal at sub-Nyquist rate. Orthogonal matching pursuit (OMP) is one of the most widely used signal reconstruction algorithms. However, the least square problem (LSP) in OMP algorithm limits its performance. This paper presents a fast CS reconstruction algorithm implemented on field-programmable gate array (FPGA) using OMP. The proposed algorithm adopts an incremental QR decomposition (QRD) method to efficiently solve the LSP. The incremental QRD is further optimized to eliminate the square root operation to facilitate hardware implementation. The proposed architecture avoiding the complex square root unit mainly consists of some more basic computing units, where the computing process is broken down into several simple operations to map to the corresponding hardware for pipelining. The proposed implementation based on Xilinx Kintex-7 FPGA exploits the parallelism by a well-planned workload schedule and reaches an optimal tradeoff between the latency and frequency. The experimental results demonstrate that the proposed architecture can run at a frequency of 210 MHz with a reconstruction time of 238 <inline-formula> <tex-math notation="LaTeX">\mu \text{s} </tex-math></inline-formula> for 36-sparse 1024-length signal, which improves the signal reconstruction speed by <inline-formula> <tex-math notation="LaTeX">1.43\times </tex-math></inline-formula> compared to the state-of-the-art implementations.
Author Zhou, Dian
Zeng, Xuan
Yang, Fan
Zhu, Hengliang
Ge, Xiang
Author_xml – sequence: 1
  givenname: Xiang
  orcidid: 0000-0001-5975-8260
  surname: Ge
  fullname: Ge, Xiang
  organization: State Key Laboratory of Application Specific Integrated Circuits and System, School of Microelectronics, Fudan University, Shanghai, China
– sequence: 2
  givenname: Fan
  orcidid: 0000-0003-2164-8175
  surname: Yang
  fullname: Yang, Fan
  email: yangfan@fudan.edu.cn
  organization: State Key Laboratory of Application Specific Integrated Circuits and System, School of Microelectronics, Fudan University, Shanghai, China
– sequence: 3
  givenname: Hengliang
  orcidid: 0000-0002-0338-9256
  surname: Zhu
  fullname: Zhu, Hengliang
  organization: State Key Laboratory of Application Specific Integrated Circuits and System, School of Microelectronics, Fudan University, Shanghai, China
– sequence: 4
  givenname: Xuan
  orcidid: 0000-0002-8097-4053
  surname: Zeng
  fullname: Zeng, Xuan
  email: xzeng@fudan.edu.cn
  organization: State Key Laboratory of Application Specific Integrated Circuits and System, School of Microelectronics, Fudan University, Shanghai, China
– sequence: 5
  givenname: Dian
  surname: Zhou
  fullname: Zhou, Dian
  organization: Department of Electrical Engineering, University of Texas at Dallas, Richardson, TX, USA
BookMark eNp9kMFOAjEQQBuDiaD-gF6aeF5sd7e77ZEoIAkGBdTjpnSnUANbaLsH_97FJR48OJeZSeZNZl4PdSpbAUI3lPQpJeJ--T5dTPoxobwf81xwnp6hLmUsj0QTnaYmWRLxmJIL1PP-kxCapoJ0kR5UeKi1UQaqgEcv4wGe7PZb2DWtDMZW2Go8c2Fj17aSW_wsg9qYao1faudrE_CHCRu8ONTSQTS3NkQjB4Bf5_gRlN3trTfHLVfoXMuth-tTvkRvo-Hy4SmazsaTh8E0UrFgIUpSzpMkI1yUTGRCrjIOpVjlqcopLblWoHIRyzzPUl1KrQFSwoSQQgOTCS-TS3TX7t07e6jBh-LT1q453Bcx5VmjiqVJM8XbKeWs9w50oUz7bXDSbAtKiqPV4sdqcbRanKw2aPwH3Tuzk-7rf-i2hQwA_AKcsYwQkXwDngWGFQ
CODEN IEVSE9
CitedBy_id crossref_primary_10_1016_j_vlsi_2024_102311
crossref_primary_10_1007_s11220_022_00389_z
crossref_primary_10_1109_TCSI_2021_3139164
crossref_primary_10_1109_TCSII_2022_3223400
crossref_primary_10_1016_j_sigpro_2020_107508
crossref_primary_10_1109_TCSII_2024_3366282
crossref_primary_10_1109_TVLSI_2025_3529954
crossref_primary_10_1186_s13638_020_01796_0
crossref_primary_10_1109_TCSI_2021_3136222
crossref_primary_10_1109_TMM_2023_3327534
crossref_primary_10_1109_LAWP_2025_3543592
crossref_primary_10_1109_TVLSI_2023_3268667
Cites_doi 10.1109/TCSI.2017.2648854
10.1049/ip-cdt:19971156
10.1109/ISSPA.2012.6310501
10.1109/ISCAS.2010.5537976
10.1109/ICECS.2012.6463559
10.1007/s10208-007-9005-x
10.1007/s11265-012-0671-9
10.1109/MSP.2007.914731
10.1137/S003614450037906X
10.1109/TSP.2009.2014277
10.1109/12.863046
10.1109/ISCAS.2016.7527217
10.1109/TIT.2007.909108
10.1109/JSSC.2011.2179451
10.1109/JETCAS.2012.2214636
10.1109/TVLSI.2014.2358716
10.1109/ICCNC.2013.6504167
10.1109/MSP.2007.914728
10.1109/TSP.2011.2173682
10.1109/ISCAS.2012.6271921
10.1109/MSP.2007.4286571
10.1109/ISCAS.2015.7168797
10.1109/TIT.2006.871582
10.1145/3056481
10.1109/TVLSI.2016.2554401
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TVLSI.2018.2879884
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9999
EndPage 623
ExternalDocumentID 10_1109_TVLSI_2018_2879884
8556009
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61822402; 61574046; 61774045; 61628402; 61574044; 61474026
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-3488336089d5969ab68ed9b74c711d8fcec792a7764fdaffee40599a9fe5a38d3
IEDL.DBID RIE
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000459713600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-8210
IngestDate Sun Nov 30 04:17:27 EST 2025
Tue Nov 18 22:11:35 EST 2025
Sat Nov 29 03:36:14 EST 2025
Wed Aug 27 02:54:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-3488336089d5969ab68ed9b74c711d8fcec792a7764fdaffee40599a9fe5a38d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0338-9256
0000-0001-5975-8260
0000-0002-8097-4053
0000-0003-2164-8175
PQID 2186109543
PQPubID 85424
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TVLSI_2018_2879884
proquest_journals_2186109543
crossref_primary_10_1109_TVLSI_2018_2879884
ieee_primary_8556009
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on very large scale integration (VLSI) systems
PublicationTitleAbbrev TVLSI
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref10
kulkarni (ref6) 2017
(ref29) 2016
ref2
ref1
ref17
ref16
ref19
ref18
(ref30) 2010
chen (ref7) 2001; 43
andrecut (ref11) 2009; 17
golub (ref26) 1996
ref24
ref23
ref20
ref22
bellis (ref25) 1997; 144
ref21
ref28
ref27
ref8
ref9
ref4
ref3
ref5
References_xml – year: 2010
  ident: ref30
  publication-title: Xilinx Redefines Power Performance and Design Productivity With Three Innovative 28 nm FPGA Families Virtex-7 Kintex-7
– start-page: 1631
  year: 2017
  ident: ref6
  article-title: LESS: Big data sketching and encryption on low power platform
  publication-title: Proc DATE
– ident: ref20
  doi: 10.1109/TCSI.2017.2648854
– volume: 17
  start-page: 151
  year: 2009
  ident: ref11
  article-title: Fast GPU implementation of sparse signal recovery from random projections
  publication-title: Eng Lett
– volume: 144
  start-page: 57
  year: 1997
  ident: ref25
  article-title: alternative systolic array for non-square-root cholesky decomposition
  publication-title: Computers and Digital Techniques IEE Proceedings-
  doi: 10.1049/ip-cdt:19971156
– ident: ref14
  doi: 10.1109/ISSPA.2012.6310501
– year: 2016
  ident: ref29
  publication-title: 7 Series DSP48E1 Slice User Guide
– ident: ref13
  doi: 10.1109/ISCAS.2010.5537976
– ident: ref18
  doi: 10.1109/ICECS.2012.6463559
– ident: ref9
  doi: 10.1007/s10208-007-9005-x
– ident: ref10
  doi: 10.1007/s11265-012-0671-9
– ident: ref2
  doi: 10.1109/MSP.2007.914731
– volume: 43
  start-page: 129
  year: 2001
  ident: ref7
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM Rev
  doi: 10.1137/S003614450037906X
– ident: ref4
  doi: 10.1109/TSP.2009.2014277
– ident: ref27
  doi: 10.1109/12.863046
– ident: ref22
  doi: 10.1109/ISCAS.2016.7527217
– ident: ref8
  doi: 10.1109/TIT.2007.909108
– ident: ref5
  doi: 10.1109/JSSC.2011.2179451
– ident: ref24
  doi: 10.1109/JETCAS.2012.2214636
– ident: ref15
  doi: 10.1109/TVLSI.2014.2358716
– ident: ref17
  doi: 10.1109/ICCNC.2013.6504167
– ident: ref3
  doi: 10.1109/MSP.2007.914728
– ident: ref28
  doi: 10.1109/TSP.2011.2173682
– ident: ref16
  doi: 10.1109/ISCAS.2012.6271921
– year: 1996
  ident: ref26
  publication-title: Matrix Computations
– ident: ref23
  doi: 10.1109/MSP.2007.4286571
– ident: ref12
  doi: 10.1109/ISCAS.2015.7168797
– ident: ref1
  doi: 10.1109/TIT.2006.871582
– ident: ref21
  doi: 10.1145/3056481
– ident: ref19
  doi: 10.1109/TVLSI.2016.2554401
SSID ssj0014490
Score 2.348531
Snippet Compressive sensing (CS) is a novel signal processing technology to reconstruct the sparse signal at sub-Nyquist rate. Orthogonal matching pursuit (OMP) is one...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 611
SubjectTerms Algorithms
Compressed sensing
Compressive sensing (CS)
Computation
Computer architecture
Decomposition
Field programmable gate arrays
field-programmable gate array (FPGA)
Hardware
Matching pursuit algorithms
Matrix decomposition
orthogonal matching pursuit (OMP)
QR decomposition (QRD)
Root matching
Schedules
Signal processing
Signal processing algorithms
Signal reconstruction
square root free (SRF)
State of the art
Workload
Title An Efficient FPGA Implementation of Orthogonal Matching Pursuit With Square-Root-Free QR Decomposition
URI https://ieeexplore.ieee.org/document/8556009
https://www.proquest.com/docview/2186109543
Volume 27
WOSCitedRecordID wos000459713600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9999
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014490
  issn: 1063-8210
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4B4rAceCO6POQDNzC0iZPYxwooIPEor4VblDhjWolNdtOU38_YSStWrJC45eCxIn_2POyZbwD2vMikmtQc12QdudBRwiWioChFG9RRlvnoeGYvo-tr-fys-jNwMK2FQUSXfIaH9tO95WeFHtursiMZWPusZmE2isK6Vmv6YiCEqpkHQp9LimMmBTJtdfTw6_L-wmZxyUOKD5SU4h8j5LqqfFLFzr70lr73Z8uw2PiRrFsDvwIzmK_Cwgd2wTUw3ZydOoYIkmW9_lmXOS7g3025Uc4Kw27KalC8WHecXZFWtvdRrD8uR-NhxZ6G1YDd_6VNhPyuKCreKxHZ7R07QZuJ3qR7rcNj7_Th-Jw3bRU4gRJU3Be2wXDYlioLVKiSNJSYqTQioDqdTBpNGCkvoSUWJkuMIegsiUuiDAaJLzN_A-byIsdNYJ5n2miM0aaTCjQeKQMMgjRBJM_EqLQFnck6x7rhHLetL15jF3u0VeywiS02cYNNC_anMn9qxo0vR69ZNKYjGyBasD2BM24O5Si27bdolkD4P_8vtQU_aG5Vp5htw1xVjnEH5vVbNRyVu26_vQNIAtRq
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH7qxqTBATYKomwwH7iBuzRxEvtYsZVWpKW0he0WJc4zqwQJpAl__2wnrYZAk7jl4Bdb-Zz3w37vewBv3FClUqs5KrV1pEyGCeWITEcpUqEMs8xDyzMbhbMZv74W8w6829XCIKJNPsO-ebR3-Vkha3NUds59Y5_FHjzwGXOdplprd2fAmGi4BwKPch3JbEtkHHG--hotJyaPi_d1hCA4Z3-YIdtX5S9lbC3M6Mn_re0IHreeJBk20B9DB_On8OgOv2AX1DAnl5YjQsuS0fzDkFg24B9twVFOCkU-ldVN8c045GSq9bI5kSLzutzU64pcrasbsvyltxHSRVFUdFQiks8LcoEmF71N-HoGX0aXq_dj2jZWoBoWv6IeMy2GA4eLzBeBSNKAYybSUEM1GGRcSY2ScJMwDJjKEqU0eIbGJREK_cTjmfcc9vMixxdAXFc5qJSSapAyVK5WB-j7aYKofRMl0h4Mtt85li3ruGl-8T220YcjYotNbLCJW2x68HYn87Ph3Lh3dNegsRvZAtGD0y2ccftbbmLTgEu_xWfey39LncHheDWN4mgy-3gCD_U8okk4O4X9qqzxFRzI39V6U762e-8We6vXsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+FPGA+Implementation+of+Orthogonal+Matching+Pursuit+With+Square-Root-Free+QR+Decomposition&rft.jtitle=IEEE+transactions+on+very+large+scale+integration+%28VLSI%29+systems&rft.au=Ge%2C+Xiang&rft.au=Yang%2C+Fan&rft.au=Zhu%2C+Hengliang&rft.au=Zeng%2C+Xuan&rft.date=2019-03-01&rft.pub=IEEE&rft.issn=1063-8210&rft.volume=27&rft.issue=3&rft.spage=611&rft.epage=623&rft_id=info:doi/10.1109%2FTVLSI.2018.2879884&rft.externalDocID=8556009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-8210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-8210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-8210&client=summon