An Efficient FPGA Implementation of Orthogonal Matching Pursuit With Square-Root-Free QR Decomposition
Compressive sensing (CS) is a novel signal processing technology to reconstruct the sparse signal at sub-Nyquist rate. Orthogonal matching pursuit (OMP) is one of the most widely used signal reconstruction algorithms. However, the least square problem (LSP) in OMP algorithm limits its performance. T...
Uloženo v:
| Vydáno v: | IEEE transactions on very large scale integration (VLSI) systems Ročník 27; číslo 3; s. 611 - 623 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1063-8210, 1557-9999 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Compressive sensing (CS) is a novel signal processing technology to reconstruct the sparse signal at sub-Nyquist rate. Orthogonal matching pursuit (OMP) is one of the most widely used signal reconstruction algorithms. However, the least square problem (LSP) in OMP algorithm limits its performance. This paper presents a fast CS reconstruction algorithm implemented on field-programmable gate array (FPGA) using OMP. The proposed algorithm adopts an incremental QR decomposition (QRD) method to efficiently solve the LSP. The incremental QRD is further optimized to eliminate the square root operation to facilitate hardware implementation. The proposed architecture avoiding the complex square root unit mainly consists of some more basic computing units, where the computing process is broken down into several simple operations to map to the corresponding hardware for pipelining. The proposed implementation based on Xilinx Kintex-7 FPGA exploits the parallelism by a well-planned workload schedule and reaches an optimal tradeoff between the latency and frequency. The experimental results demonstrate that the proposed architecture can run at a frequency of 210 MHz with a reconstruction time of 238 <inline-formula> <tex-math notation="LaTeX">\mu \text{s} </tex-math></inline-formula> for 36-sparse 1024-length signal, which improves the signal reconstruction speed by <inline-formula> <tex-math notation="LaTeX">1.43\times </tex-math></inline-formula> compared to the state-of-the-art implementations. |
|---|---|
| AbstractList | Compressive sensing (CS) is a novel signal processing technology to reconstruct the sparse signal at sub-Nyquist rate. Orthogonal matching pursuit (OMP) is one of the most widely used signal reconstruction algorithms. However, the least square problem (LSP) in OMP algorithm limits its performance. This paper presents a fast CS reconstruction algorithm implemented on field-programmable gate array (FPGA) using OMP. The proposed algorithm adopts an incremental QR decomposition (QRD) method to efficiently solve the LSP. The incremental QRD is further optimized to eliminate the square root operation to facilitate hardware implementation. The proposed architecture avoiding the complex square root unit mainly consists of some more basic computing units, where the computing process is broken down into several simple operations to map to the corresponding hardware for pipelining. The proposed implementation based on Xilinx Kintex-7 FPGA exploits the parallelism by a well-planned workload schedule and reaches an optimal tradeoff between the latency and frequency. The experimental results demonstrate that the proposed architecture can run at a frequency of 210 MHz with a reconstruction time of 238 [Formula Omitted] for 36-sparse 1024-length signal, which improves the signal reconstruction speed by [Formula Omitted] compared to the state-of-the-art implementations. Compressive sensing (CS) is a novel signal processing technology to reconstruct the sparse signal at sub-Nyquist rate. Orthogonal matching pursuit (OMP) is one of the most widely used signal reconstruction algorithms. However, the least square problem (LSP) in OMP algorithm limits its performance. This paper presents a fast CS reconstruction algorithm implemented on field-programmable gate array (FPGA) using OMP. The proposed algorithm adopts an incremental QR decomposition (QRD) method to efficiently solve the LSP. The incremental QRD is further optimized to eliminate the square root operation to facilitate hardware implementation. The proposed architecture avoiding the complex square root unit mainly consists of some more basic computing units, where the computing process is broken down into several simple operations to map to the corresponding hardware for pipelining. The proposed implementation based on Xilinx Kintex-7 FPGA exploits the parallelism by a well-planned workload schedule and reaches an optimal tradeoff between the latency and frequency. The experimental results demonstrate that the proposed architecture can run at a frequency of 210 MHz with a reconstruction time of 238 <inline-formula> <tex-math notation="LaTeX">\mu \text{s} </tex-math></inline-formula> for 36-sparse 1024-length signal, which improves the signal reconstruction speed by <inline-formula> <tex-math notation="LaTeX">1.43\times </tex-math></inline-formula> compared to the state-of-the-art implementations. |
| Author | Zhou, Dian Zeng, Xuan Yang, Fan Zhu, Hengliang Ge, Xiang |
| Author_xml | – sequence: 1 givenname: Xiang orcidid: 0000-0001-5975-8260 surname: Ge fullname: Ge, Xiang organization: State Key Laboratory of Application Specific Integrated Circuits and System, School of Microelectronics, Fudan University, Shanghai, China – sequence: 2 givenname: Fan orcidid: 0000-0003-2164-8175 surname: Yang fullname: Yang, Fan email: yangfan@fudan.edu.cn organization: State Key Laboratory of Application Specific Integrated Circuits and System, School of Microelectronics, Fudan University, Shanghai, China – sequence: 3 givenname: Hengliang orcidid: 0000-0002-0338-9256 surname: Zhu fullname: Zhu, Hengliang organization: State Key Laboratory of Application Specific Integrated Circuits and System, School of Microelectronics, Fudan University, Shanghai, China – sequence: 4 givenname: Xuan orcidid: 0000-0002-8097-4053 surname: Zeng fullname: Zeng, Xuan email: xzeng@fudan.edu.cn organization: State Key Laboratory of Application Specific Integrated Circuits and System, School of Microelectronics, Fudan University, Shanghai, China – sequence: 5 givenname: Dian surname: Zhou fullname: Zhou, Dian organization: Department of Electrical Engineering, University of Texas at Dallas, Richardson, TX, USA |
| BookMark | eNp9kMFOAjEQQBuDiaD-gF6aeF5sd7e77ZEoIAkGBdTjpnSnUANbaLsH_97FJR48OJeZSeZNZl4PdSpbAUI3lPQpJeJ--T5dTPoxobwf81xwnp6hLmUsj0QTnaYmWRLxmJIL1PP-kxCapoJ0kR5UeKi1UQaqgEcv4wGe7PZb2DWtDMZW2Go8c2Fj17aSW_wsg9qYao1faudrE_CHCRu8ONTSQTS3NkQjB4Bf5_gRlN3trTfHLVfoXMuth-tTvkRvo-Hy4SmazsaTh8E0UrFgIUpSzpMkI1yUTGRCrjIOpVjlqcopLblWoHIRyzzPUl1KrQFSwoSQQgOTCS-TS3TX7t07e6jBh-LT1q453Bcx5VmjiqVJM8XbKeWs9w50oUz7bXDSbAtKiqPV4sdqcbRanKw2aPwH3Tuzk-7rf-i2hQwA_AKcsYwQkXwDngWGFQ |
| CODEN | IEVSE9 |
| CitedBy_id | crossref_primary_10_1016_j_vlsi_2024_102311 crossref_primary_10_1007_s11220_022_00389_z crossref_primary_10_1109_TCSI_2021_3139164 crossref_primary_10_1109_TCSII_2022_3223400 crossref_primary_10_1016_j_sigpro_2020_107508 crossref_primary_10_1109_TCSII_2024_3366282 crossref_primary_10_1109_TVLSI_2025_3529954 crossref_primary_10_1186_s13638_020_01796_0 crossref_primary_10_1109_TCSI_2021_3136222 crossref_primary_10_1109_TMM_2023_3327534 crossref_primary_10_1109_LAWP_2025_3543592 crossref_primary_10_1109_TVLSI_2023_3268667 |
| Cites_doi | 10.1109/TCSI.2017.2648854 10.1049/ip-cdt:19971156 10.1109/ISSPA.2012.6310501 10.1109/ISCAS.2010.5537976 10.1109/ICECS.2012.6463559 10.1007/s10208-007-9005-x 10.1007/s11265-012-0671-9 10.1109/MSP.2007.914731 10.1137/S003614450037906X 10.1109/TSP.2009.2014277 10.1109/12.863046 10.1109/ISCAS.2016.7527217 10.1109/TIT.2007.909108 10.1109/JSSC.2011.2179451 10.1109/JETCAS.2012.2214636 10.1109/TVLSI.2014.2358716 10.1109/ICCNC.2013.6504167 10.1109/MSP.2007.914728 10.1109/TSP.2011.2173682 10.1109/ISCAS.2012.6271921 10.1109/MSP.2007.4286571 10.1109/ISCAS.2015.7168797 10.1109/TIT.2006.871582 10.1145/3056481 10.1109/TVLSI.2016.2554401 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TVLSI.2018.2879884 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9999 |
| EndPage | 623 |
| ExternalDocumentID | 10_1109_TVLSI_2018_2879884 8556009 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61822402; 61574046; 61774045; 61628402; 61574044; 61474026 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c295t-3488336089d5969ab68ed9b74c711d8fcec792a7764fdaffee40599a9fe5a38d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000459713600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-8210 |
| IngestDate | Sun Nov 30 04:17:27 EST 2025 Tue Nov 18 22:11:35 EST 2025 Sat Nov 29 03:36:14 EST 2025 Wed Aug 27 02:54:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-3488336089d5969ab68ed9b74c711d8fcec792a7764fdaffee40599a9fe5a38d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0338-9256 0000-0001-5975-8260 0000-0002-8097-4053 0000-0003-2164-8175 |
| PQID | 2186109543 |
| PQPubID | 85424 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TVLSI_2018_2879884 proquest_journals_2186109543 crossref_primary_10_1109_TVLSI_2018_2879884 ieee_primary_8556009 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-01 |
| PublicationDateYYYYMMDD | 2019-03-01 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on very large scale integration (VLSI) systems |
| PublicationTitleAbbrev | TVLSI |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref10 kulkarni (ref6) 2017 (ref29) 2016 ref2 ref1 ref17 ref16 ref19 ref18 (ref30) 2010 chen (ref7) 2001; 43 andrecut (ref11) 2009; 17 golub (ref26) 1996 ref24 ref23 ref20 ref22 bellis (ref25) 1997; 144 ref21 ref28 ref27 ref8 ref9 ref4 ref3 ref5 |
| References_xml | – year: 2010 ident: ref30 publication-title: Xilinx Redefines Power Performance and Design Productivity With Three Innovative 28 nm FPGA Families Virtex-7 Kintex-7 – start-page: 1631 year: 2017 ident: ref6 article-title: LESS: Big data sketching and encryption on low power platform publication-title: Proc DATE – ident: ref20 doi: 10.1109/TCSI.2017.2648854 – volume: 17 start-page: 151 year: 2009 ident: ref11 article-title: Fast GPU implementation of sparse signal recovery from random projections publication-title: Eng Lett – volume: 144 start-page: 57 year: 1997 ident: ref25 article-title: alternative systolic array for non-square-root cholesky decomposition publication-title: Computers and Digital Techniques IEE Proceedings- doi: 10.1049/ip-cdt:19971156 – ident: ref14 doi: 10.1109/ISSPA.2012.6310501 – year: 2016 ident: ref29 publication-title: 7 Series DSP48E1 Slice User Guide – ident: ref13 doi: 10.1109/ISCAS.2010.5537976 – ident: ref18 doi: 10.1109/ICECS.2012.6463559 – ident: ref9 doi: 10.1007/s10208-007-9005-x – ident: ref10 doi: 10.1007/s11265-012-0671-9 – ident: ref2 doi: 10.1109/MSP.2007.914731 – volume: 43 start-page: 129 year: 2001 ident: ref7 article-title: Atomic decomposition by basis pursuit publication-title: SIAM Rev doi: 10.1137/S003614450037906X – ident: ref4 doi: 10.1109/TSP.2009.2014277 – ident: ref27 doi: 10.1109/12.863046 – ident: ref22 doi: 10.1109/ISCAS.2016.7527217 – ident: ref8 doi: 10.1109/TIT.2007.909108 – ident: ref5 doi: 10.1109/JSSC.2011.2179451 – ident: ref24 doi: 10.1109/JETCAS.2012.2214636 – ident: ref15 doi: 10.1109/TVLSI.2014.2358716 – ident: ref17 doi: 10.1109/ICCNC.2013.6504167 – ident: ref3 doi: 10.1109/MSP.2007.914728 – ident: ref28 doi: 10.1109/TSP.2011.2173682 – ident: ref16 doi: 10.1109/ISCAS.2012.6271921 – year: 1996 ident: ref26 publication-title: Matrix Computations – ident: ref23 doi: 10.1109/MSP.2007.4286571 – ident: ref12 doi: 10.1109/ISCAS.2015.7168797 – ident: ref1 doi: 10.1109/TIT.2006.871582 – ident: ref21 doi: 10.1145/3056481 – ident: ref19 doi: 10.1109/TVLSI.2016.2554401 |
| SSID | ssj0014490 |
| Score | 2.348531 |
| Snippet | Compressive sensing (CS) is a novel signal processing technology to reconstruct the sparse signal at sub-Nyquist rate. Orthogonal matching pursuit (OMP) is one... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 611 |
| SubjectTerms | Algorithms Compressed sensing Compressive sensing (CS) Computation Computer architecture Decomposition Field programmable gate arrays field-programmable gate array (FPGA) Hardware Matching pursuit algorithms Matrix decomposition orthogonal matching pursuit (OMP) QR decomposition (QRD) Root matching Schedules Signal processing Signal processing algorithms Signal reconstruction square root free (SRF) State of the art Workload |
| Title | An Efficient FPGA Implementation of Orthogonal Matching Pursuit With Square-Root-Free QR Decomposition |
| URI | https://ieeexplore.ieee.org/document/8556009 https://www.proquest.com/docview/2186109543 |
| Volume | 27 |
| WOSCitedRecordID | wos000459713600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9999 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014490 issn: 1063-8210 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4B4rAceCO6POQDNzC0iZPYxwooIPEor4VblDhjWolNdtOU38_YSStWrJC45eCxIn_2POyZbwD2vMikmtQc12QdudBRwiWioChFG9RRlvnoeGYvo-tr-fys-jNwMK2FQUSXfIaH9tO95WeFHtursiMZWPusZmE2isK6Vmv6YiCEqpkHQp9LimMmBTJtdfTw6_L-wmZxyUOKD5SU4h8j5LqqfFLFzr70lr73Z8uw2PiRrFsDvwIzmK_Cwgd2wTUw3ZydOoYIkmW9_lmXOS7g3025Uc4Kw27KalC8WHecXZFWtvdRrD8uR-NhxZ6G1YDd_6VNhPyuKCreKxHZ7R07QZuJ3qR7rcNj7_Th-Jw3bRU4gRJU3Be2wXDYlioLVKiSNJSYqTQioDqdTBpNGCkvoSUWJkuMIegsiUuiDAaJLzN_A-byIsdNYJ5n2miM0aaTCjQeKQMMgjRBJM_EqLQFnck6x7rhHLetL15jF3u0VeywiS02cYNNC_anMn9qxo0vR69ZNKYjGyBasD2BM24O5Si27bdolkD4P_8vtQU_aG5Vp5htw1xVjnEH5vVbNRyVu26_vQNIAtRq |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH7qxqTBATYKomwwH7iBuzRxEvtYsZVWpKW0he0WJc4zqwQJpAl__2wnrYZAk7jl4Bdb-Zz3w37vewBv3FClUqs5KrV1pEyGCeWITEcpUqEMs8xDyzMbhbMZv74W8w6829XCIKJNPsO-ebR3-Vkha3NUds59Y5_FHjzwGXOdplprd2fAmGi4BwKPch3JbEtkHHG--hotJyaPi_d1hCA4Z3-YIdtX5S9lbC3M6Mn_re0IHreeJBk20B9DB_On8OgOv2AX1DAnl5YjQsuS0fzDkFg24B9twVFOCkU-ldVN8c045GSq9bI5kSLzutzU64pcrasbsvyltxHSRVFUdFQiks8LcoEmF71N-HoGX0aXq_dj2jZWoBoWv6IeMy2GA4eLzBeBSNKAYybSUEM1GGRcSY2ScJMwDJjKEqU0eIbGJREK_cTjmfcc9vMixxdAXFc5qJSSapAyVK5WB-j7aYKofRMl0h4Mtt85li3ruGl-8T220YcjYotNbLCJW2x68HYn87Ph3Lh3dNegsRvZAtGD0y2ccftbbmLTgEu_xWfey39LncHheDWN4mgy-3gCD_U8okk4O4X9qqzxFRzI39V6U762e-8We6vXsQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+FPGA+Implementation+of+Orthogonal+Matching+Pursuit+With+Square-Root-Free+QR+Decomposition&rft.jtitle=IEEE+transactions+on+very+large+scale+integration+%28VLSI%29+systems&rft.au=Ge%2C+Xiang&rft.au=Yang%2C+Fan&rft.au=Zhu%2C+Hengliang&rft.au=Zeng%2C+Xuan&rft.date=2019-03-01&rft.pub=IEEE&rft.issn=1063-8210&rft.volume=27&rft.issue=3&rft.spage=611&rft.epage=623&rft_id=info:doi/10.1109%2FTVLSI.2018.2879884&rft.externalDocID=8556009 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-8210&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-8210&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-8210&client=summon |