An Analytical Model for Sparse Network Codes: Field Size Considerations

One of the by-products of Sparse Network Coding (SNC) is the ability to perform partial decoding, i.e., decoding some original packets prior to collecting all needed coded packets to decode the entire coded data. Due to this ability, SNC has been recently used as a technique for reducing the Average...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters Jg. 24; H. 4; S. 729 - 733
Hauptverfasser: Zarei, Amir, Pahlevani, Peyman, Lucani, Daniel E.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-7798, 1558-2558
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract One of the by-products of Sparse Network Coding (SNC) is the ability to perform partial decoding, i.e., decoding some original packets prior to collecting all needed coded packets to decode the entire coded data. Due to this ability, SNC has been recently used as a technique for reducing the Average Decoding Delay (ADD) per packet in real-time multimedia applications. This study focuses on characterizing the ADD per packet for SNC considering the impact of finite field size. We present a Markov Chain model that allows us to determine lower bounds on the mean number of transmissions required to decode a fraction of a generation and the ADD per packet of the generation. We validate our model using simulations and show that the smaller finite fields, e.g., <inline-formula> <tex-math notation="LaTeX">q = 2^{4} </tex-math></inline-formula>, outperform large finite fields, e.g., <inline-formula> <tex-math notation="LaTeX">q = 2^{32} </tex-math></inline-formula>, in regard to the ADD per packet and provide a better trade-off between the ADD per packet and the overall number of transmissions to decode a generation.
AbstractList One of the by-products of Sparse Network Coding (SNC) is the ability to perform partial decoding, i.e., decoding some original packets prior to collecting all needed coded packets to decode the entire coded data. Due to this ability, SNC has been recently used as a technique for reducing the Average Decoding Delay (ADD) per packet in real-time multimedia applications. This study focuses on characterizing the ADD per packet for SNC considering the impact of finite field size. We present a Markov Chain model that allows us to determine lower bounds on the mean number of transmissions required to decode a fraction of a generation and the ADD per packet of the generation. We validate our model using simulations and show that the smaller finite fields, e.g., [Formula Omitted], outperform large finite fields, e.g., [Formula Omitted], in regard to the ADD per packet and provide a better trade-off between the ADD per packet and the overall number of transmissions to decode a generation.
One of the by-products of Sparse Network Coding (SNC) is the ability to perform partial decoding, i.e., decoding some original packets prior to collecting all needed coded packets to decode the entire coded data. Due to this ability, SNC has been recently used as a technique for reducing the Average Decoding Delay (ADD) per packet in real-time multimedia applications. This study focuses on characterizing the ADD per packet for SNC considering the impact of finite field size. We present a Markov Chain model that allows us to determine lower bounds on the mean number of transmissions required to decode a fraction of a generation and the ADD per packet of the generation. We validate our model using simulations and show that the smaller finite fields, e.g., <inline-formula> <tex-math notation="LaTeX">q = 2^{4} </tex-math></inline-formula>, outperform large finite fields, e.g., <inline-formula> <tex-math notation="LaTeX">q = 2^{32} </tex-math></inline-formula>, in regard to the ADD per packet and provide a better trade-off between the ADD per packet and the overall number of transmissions to decode a generation.
Author Zarei, Amir
Lucani, Daniel E.
Pahlevani, Peyman
Author_xml – sequence: 1
  givenname: Amir
  orcidid: 0000-0002-0287-513X
  surname: Zarei
  fullname: Zarei, Amir
  email: az.hldv@gmail.com
  organization: Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
– sequence: 2
  givenname: Peyman
  orcidid: 0000-0001-5918-7250
  surname: Pahlevani
  fullname: Pahlevani, Peyman
  organization: Wireless Communication Laboratory, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
– sequence: 3
  givenname: Daniel E.
  orcidid: 0000-0001-5325-8863
  surname: Lucani
  fullname: Lucani, Daniel E.
  organization: Department of Engineering, Aarhus University, Aarhus, Denmark
BookMark eNp9kE1PwzAMhiMEEtvgD8ClEucOJ1mahNs0sYG0scPgHKWtK2WUdiSd0Pj1ZB_iwIGLbdl-rNdvn5w3bYOE3FAYUgr6fj5ZLhZDBgyGTGdCM3VGelQIlbIYzmMNSqdSanVJ-iGsAUAxQXtkNm6ScWPrXecKWyeLtsQ6qVqfrDbWB0xesPtq_XsyiYPwkEwd1mWyct8YO01wJXrbuVhdkYvK1gGvT3lA3qaPr5OndL6cPU_G87RgWnQpHymZc6XzigIKlkmoKsFyixnqgucKcytzK3SuOB-B1lTGcVTKlBKqHFk-IHfHuxvffm4xdGbdbn18IBjGlaIAGYO4pY5bhW9D8FiZwnUHoZ23rjYUzN42c7DN7G0zJ9siyv6gG-8-rN_9D90eIYeIv4DSQoIE_gNsbHlQ
CODEN ICLEF6
CitedBy_id crossref_primary_10_1109_COMST_2024_3408277
crossref_primary_10_1109_LCOMM_2022_3181722
crossref_primary_10_1016_j_jnca_2024_103825
crossref_primary_10_1109_ACCESS_2023_3243797
crossref_primary_10_1109_ACCESS_2021_3137209
crossref_primary_10_32604_ee_2023_026395
crossref_primary_10_1002_ett_3974
crossref_primary_10_1109_JIOT_2023_3281735
crossref_primary_10_1109_LCOMM_2020_3031011
crossref_primary_10_1109_LCOMM_2020_3041845
Cites_doi 10.1109/TCOMM.2017.2657621
10.1007/978-3-642-23041-7_13
10.1109/TIT.2006.881746
10.1109/LCOMM.2018.2840139
10.1109/icc.2011.5963013
10.1109/NETCOD.2009.5191397
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/LCOMM.2020.2965928
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2558
EndPage 733
ExternalDocumentID 10_1109_LCOMM_2020_2965928
8957070
Genre orig-research
GrantInformation_xml – fundername: TuneSCode project granted by the Danish Council for Independent Research
  grantid: DFF 1335-00125
– fundername: AUFF Starting
  grantid: AUFF-2017-FLS-7-1
– fundername: SCALE-IoT project granted by the Danish Council for Independent Research
  grantid: DFF 7026-00042B
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-3487b389bf10e52670ff52bae6e9c3b8eba7ba59b833409917f5282528858d4a3
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528817100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-7798
IngestDate Mon Jun 30 10:22:17 EDT 2025
Sat Nov 29 03:56:02 EST 2025
Tue Nov 18 21:29:46 EST 2025
Wed Aug 27 02:35:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-3487b389bf10e52670ff52bae6e9c3b8eba7ba59b833409917f5282528858d4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5918-7250
0000-0001-5325-8863
0000-0002-0287-513X
PQID 2388100620
PQPubID 85419
PageCount 5
ParticipantIDs crossref_citationtrail_10_1109_LCOMM_2020_2965928
proquest_journals_2388100620
ieee_primary_8957070
crossref_primary_10_1109_LCOMM_2020_2965928
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE communications letters
PublicationTitleAbbrev COML
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref7
ref4
ref3
kurose (ref9) 2016
luby (ref6) 2003
ref5
feizi (ref8) 2012
ref2
ref1
References_xml – ident: ref5
  doi: 10.1109/TCOMM.2017.2657621
– year: 2016
  ident: ref9
  publication-title: Computer Networking A Top-down Approach
– ident: ref7
  doi: 10.1007/978-3-642-23041-7_13
– ident: ref1
  doi: 10.1109/TIT.2006.881746
– start-page: 107
  year: 2012
  ident: ref8
  article-title: Tunable sparse network coding
  publication-title: Proc Int Zurich Seminar Commun
– ident: ref2
  doi: 10.1109/LCOMM.2018.2840139
– ident: ref4
  doi: 10.1109/icc.2011.5963013
– year: 2003
  ident: ref6
  article-title: LT codes
  publication-title: Proc 43rd Annu IEEE Symp Found Comput Sci
– ident: ref3
  doi: 10.1109/NETCOD.2009.5191397
SSID ssj0008251
Score 2.364817
Snippet One of the by-products of Sparse Network Coding (SNC) is the ability to perform partial decoding, i.e., decoding some original packets prior to collecting all...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 729
SubjectTerms Analytical models
average decoding delay per packet
Computer simulation
Decoding
Delays
Encoding
Fields (mathematics)
Lower bounds
Markov chains
Markov processes
Mathematical models
Multimedia
Random linear network coding
Receivers
Sparse matrices
sparse network coding
Title An Analytical Model for Sparse Network Codes: Field Size Considerations
URI https://ieeexplore.ieee.org/document/8957070
https://www.proquest.com/docview/2388100620
Volume 24
WOSCitedRecordID wos000528817100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2558
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008251
  issn: 1089-7798
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4UEPfk1xOiUHb9ot_UiTeBvD6WGbwhR2K236CoPRjX148K83SbsyUARvhSSl_F6a934v7wPgLhQUOc_QQRM7GPhp4MRKUEdrItTmrFZpsZX0gI9GYjKRbzV4qHJhENEGn2HbPNq7_HSuNsZV1hGScb1F92CP87DI1apOXZOCWQTTS20xSrFNkKGyM-i9DoeaCnq07Zn6eabz-o4Ssl1VfhzFVr_0j__3ZSdwVNqRpFsI_hRqmJ_B4U51wQY8d3Nia45YdzUxXc9mRNuoZLzQbBbJqIgAJz09sHokfRPLRsbTLyTbLp6FN-8cPvpP770Xp-yb4ChPsrXjaxKSaEMkyVyKzAs5zTLmJTGGKJWfCExinsRMJsL3Nb3ThE0Pa_w8IZhIg9i_gHo-z_ESSMqQq8BVsVAyUIxLjNENpRFiELoomuBugYxUWVTc9LaYRZZcUBlZ8CMDflSC34T7as2iKKnx5-yGgbuaWSLdhNZWXlH5160ibX4I12SF0qvfV13DgXl3EXnTgvp6ucEb2Fef6-lqeWs31DeFMsVh
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFdSDrypWq-7Bm6bNO7vepFgrplFohd5CsplAoaSlDw_-enc3DwqK4C2wuyR8s9l57Mx8ALcu1dHzUtRQ5g7aVmJrEae6JjQRCnNWqLRISdr3goCOx-y9BvdVLQwiquQzbMtHdZefzPhahso6lDme2KJbsC2Zs4pqrerclUWYeTo9EzYjo2WJjM46fvdtMBDOoKm3TdlBT3Kvb6ghxavy4zBWGqZ3-L9vO4KDwpIkj7noj6GG2Qnsb_QXbMDzY0ZU1xEVsCaS92xKhJVKhnPhzyIJ8hxw0hUDywfSk9lsZDj5QlLyeObxvFP46D2Nun2tYE7QuMmclWYJNyQWpkicGjo6puvpaeqYcYQuMm7FFOPIiyOHxdSyhIMnXDYxLPAzKXVoYkfWGdSzWYbnQBIHPW4bPKKc2dzxGEZouEyK0XYNpE0wSiBDXrQVl-wW01C5FzoLFfihBD8swG_CXbVmnjfV-HN2Q8JdzSyQbkKrlFdY_HfLUBgg1JB1ofrF76tuYLc_Gvih_xK8XsKefE-eh9OC-mqxxivY4Z-ryXJxrTbXN_vCyKo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Analytical+Model+for+Sparse+Network+Codes%3A+Field+Size+Considerations&rft.jtitle=IEEE+communications+letters&rft.au=Zarei%2C+Amir&rft.au=Pahlevani%2C+Peyman&rft.au=Lucani%2C+Daniel+E.&rft.date=2020-04-01&rft.issn=1089-7798&rft.eissn=1558-2558&rft.volume=24&rft.issue=4&rft.spage=729&rft.epage=733&rft_id=info:doi/10.1109%2FLCOMM.2020.2965928&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LCOMM_2020_2965928
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7798&client=summon