RPkNN: An OpenCL-Based FPGA Implementation of the Dimensionality-Reduced kNN Algorithm Using Random Projection

Due to the so-called curse of dimensionality and increase in the size of databases, there is an ever-increasing demand for computing resources and memory bandwidth when performing the k-nearest neighbors (kNNs) algorithm, resulting in a slow-down to process large datasets. This work presents an Open...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on very large scale integration (VLSI) systems Ročník 30; číslo 4; s. 549 - 552
Hlavní autoři: Bank Tavakoli, Erfan, Beygi, Amir, Yao, Xuebin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1063-8210, 1557-9999
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Due to the so-called curse of dimensionality and increase in the size of databases, there is an ever-increasing demand for computing resources and memory bandwidth when performing the k-nearest neighbors (kNNs) algorithm, resulting in a slow-down to process large datasets. This work presents an OpenCL-based framework for accelerating the kNN algorithm on field-programmable gate arrays (FPGAs) benefiting from the random projection dimensionality reduction. The proposed RPkNN framework includes two compute modules implementing a throughput-optimized hardware architecture based on random projection and the kNN algorithm and a host program facilitating easy integration of the compute modules in the existing applications. RPkNN also utilizes a new buffering scheme tailored to random projection and the kNN algorithm. The proposed architecture enables parallel kNN computations with a single memory channel and takes advantage of the sparsity features of the input data to implement a highly optimized and parallel implementation of random projection. We employ a computation storage device (CSD) to directly access the high-dimensional data on non-volatile memory express (NVMe) solid state drive (SSD) and store and reuse the compressed and low-dimensional data on the FPGA dynamic random access memory (DRAM), hence eliminating data transfers to the host DRAM. We compare RPkNN implemented on the Samsung SmartSSD CSD with the kNN implementation of the scikit-learn library running on an Intel Xeon Gold 6154 CPU. The experimental results show that the proposed RPkNN solution achieves, on average, <inline-formula> <tex-math notation="LaTeX">26\times </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">46\times </tex-math></inline-formula> higher performance across different dimensions per a single kNN computation for the SIFT1M and GIST1M databases, respectively. Finally, RPkNN is <inline-formula> <tex-math notation="LaTeX">1.7\times </tex-math></inline-formula> faster than the similar FPGA-based reference method.
AbstractList Due to the so-called curse of dimensionality and increase in the size of databases, there is an ever-increasing demand for computing resources and memory bandwidth when performing the k-nearest neighbors (kNNs) algorithm, resulting in a slow-down to process large datasets. This work presents an OpenCL-based framework for accelerating the kNN algorithm on field-programmable gate arrays (FPGAs) benefiting from the random projection dimensionality reduction. The proposed RPkNN framework includes two compute modules implementing a throughput-optimized hardware architecture based on random projection and the kNN algorithm and a host program facilitating easy integration of the compute modules in the existing applications. RPkNN also utilizes a new buffering scheme tailored to random projection and the kNN algorithm. The proposed architecture enables parallel kNN computations with a single memory channel and takes advantage of the sparsity features of the input data to implement a highly optimized and parallel implementation of random projection. We employ a computation storage device (CSD) to directly access the high-dimensional data on non-volatile memory express (NVMe) solid state drive (SSD) and store and reuse the compressed and low-dimensional data on the FPGA dynamic random access memory (DRAM), hence eliminating data transfers to the host DRAM. We compare RPkNN implemented on the Samsung SmartSSD CSD with the kNN implementation of the scikit-learn library running on an Intel Xeon Gold 6154 CPU. The experimental results show that the proposed RPkNN solution achieves, on average, [Formula Omitted] and [Formula Omitted] higher performance across different dimensions per a single kNN computation for the SIFT1M and GIST1M databases, respectively. Finally, RPkNN is [Formula Omitted] faster than the similar FPGA-based reference method.
Due to the so-called curse of dimensionality and increase in the size of databases, there is an ever-increasing demand for computing resources and memory bandwidth when performing the k-nearest neighbors (kNNs) algorithm, resulting in a slow-down to process large datasets. This work presents an OpenCL-based framework for accelerating the kNN algorithm on field-programmable gate arrays (FPGAs) benefiting from the random projection dimensionality reduction. The proposed RPkNN framework includes two compute modules implementing a throughput-optimized hardware architecture based on random projection and the kNN algorithm and a host program facilitating easy integration of the compute modules in the existing applications. RPkNN also utilizes a new buffering scheme tailored to random projection and the kNN algorithm. The proposed architecture enables parallel kNN computations with a single memory channel and takes advantage of the sparsity features of the input data to implement a highly optimized and parallel implementation of random projection. We employ a computation storage device (CSD) to directly access the high-dimensional data on non-volatile memory express (NVMe) solid state drive (SSD) and store and reuse the compressed and low-dimensional data on the FPGA dynamic random access memory (DRAM), hence eliminating data transfers to the host DRAM. We compare RPkNN implemented on the Samsung SmartSSD CSD with the kNN implementation of the scikit-learn library running on an Intel Xeon Gold 6154 CPU. The experimental results show that the proposed RPkNN solution achieves, on average, <inline-formula> <tex-math notation="LaTeX">26\times </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">46\times </tex-math></inline-formula> higher performance across different dimensions per a single kNN computation for the SIFT1M and GIST1M databases, respectively. Finally, RPkNN is <inline-formula> <tex-math notation="LaTeX">1.7\times </tex-math></inline-formula> faster than the similar FPGA-based reference method.
Author Yao, Xuebin
Bank Tavakoli, Erfan
Beygi, Amir
Author_xml – sequence: 1
  givenname: Erfan
  orcidid: 0000-0002-3248-9301
  surname: Bank Tavakoli
  fullname: Bank Tavakoli, Erfan
  email: ebanktav@asu.edu
  organization: School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
– sequence: 2
  givenname: Amir
  surname: Beygi
  fullname: Beygi, Amir
  email: a.beygi@samsung.com
  organization: Memory Solutions Lab, Samsung Semiconductor, Inc, San Jose, CA, USA
– sequence: 3
  givenname: Xuebin
  surname: Yao
  fullname: Yao, Xuebin
  email: xuebin.yao@samsung.com
  organization: Memory Solutions Lab, Samsung Semiconductor, Inc, San Jose, CA, USA
BookMark eNp9kMlOwzAQhi0EEusLwMUS55TxkqbmVspWqWqrslwjJ5mAS2IXOz307XEp4sABX2yP5vvH_o7JvnUWCTln0GMM1NXz6-Rp3OPAeU8wmWVS7JEjlqZZouLaj2foi2TAGRyS4xCWAExKBUfELuYf0-k1HVo6W6EdTZIbHbCi9_OHIR23qwZbtJ3ujLPU1bR7R3prYinEgm5Mt0kWWK3LSMQYOmzenDfde0tfgrFvdKFt5Vo6926J5TbjlBzUugl49rOfkJf7u-fRYzKZPYxHw0lScpV2iRCFAgWYQt0XQqka4q9YEa8VMs0FSwe6AkBW1bIuECohpOKizLQuq0IW4oRc7nJX3n2uMXT50q19fHHIeV8ypVLOIXbxXVfpXQge63zlTav9JmeQb73m317zrdf8x2uEBn-g0uwEdV6b5n_0YocaRPydpTImIQPxBXPGh24
CODEN ITCOB4
CitedBy_id crossref_primary_10_3390_s23125710
crossref_primary_10_1016_j_eswa_2024_123570
crossref_primary_10_1038_s41598_024_80210_x
crossref_primary_10_1145_3616873
Cites_doi 10.1371/journal.pgen.1004573
10.1109/FPT.2016.7929193
10.1109/ICCD46524.2019.00030
10.1109/ICFPT51103.2020.00027
10.1090/conm/026/737400
10.1007/978-3-540-39964-3_62
10.1007/s10115-007-0114-2
10.1007/s10994-006-6265-7
10.1109/CVPR.2018.00517
10.1109/ICFPT51103.2020.00026
10.1002/9780470713785
10.1007/978-1-4419-9660-2
10.1145/1150402.1150436
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TVLSI.2022.3147743
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9999
EndPage 552
ExternalDocumentID 10_1109_TVLSI_2022_3147743
9714070
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-33b9090e50f63399f03141b50fde1a23158ad00e1df4fbe0d334923c7aacdb4b3
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000758189100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-8210
IngestDate Mon Jun 30 17:03:03 EDT 2025
Sat Nov 29 03:36:19 EST 2025
Tue Nov 18 21:32:40 EST 2025
Wed Aug 27 02:40:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-33b9090e50f63399f03141b50fde1a23158ad00e1df4fbe0d334923c7aacdb4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3248-9301
PQID 2641995220
PQPubID 85424
PageCount 4
ParticipantIDs crossref_primary_10_1109_TVLSI_2022_3147743
proquest_journals_2641995220
ieee_primary_9714070
crossref_citationtrail_10_1109_TVLSI_2022_3147743
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on very large scale integration (VLSI) systems
PublicationTitleAbbrev TVLSI
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
ref2
ref1
(ref15) 2021
ref8
ref7
ref4
ref3
ref6
ref5
Pedregosa (ref9) 2012; 12
References_xml – ident: ref2
  doi: 10.1371/journal.pgen.1004573
– volume: 12
  start-page: 2825
  year: 2012
  ident: ref9
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: ref14
  doi: 10.1109/FPT.2016.7929193
– ident: ref8
  doi: 10.1109/ICCD46524.2019.00030
– ident: ref13
  doi: 10.1109/ICFPT51103.2020.00027
– ident: ref10
  doi: 10.1090/conm/026/737400
– ident: ref1
  doi: 10.1007/978-3-540-39964-3_62
– ident: ref3
  doi: 10.1007/s10115-007-0114-2
– ident: ref11
  doi: 10.1007/s10994-006-6265-7
– ident: ref7
  doi: 10.1109/CVPR.2018.00517
– ident: ref6
  doi: 10.1109/ICFPT51103.2020.00026
– volume-title: SmartSSD Computational Storage Drive: Installation and User Guide
  year: 2021
  ident: ref15
– ident: ref4
  doi: 10.1002/9780470713785
– ident: ref5
  doi: 10.1007/978-1-4419-9660-2
– ident: ref12
  doi: 10.1145/1150402.1150436
SSID ssj0014490
Score 2.3950236
Snippet Due to the so-called curse of dimensionality and increase in the size of databases, there is an ever-increasing demand for computing resources and memory...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 549
SubjectTerms Algorithms
Bandwidth
Computation
Computer architecture
Dynamic random access memory
Field programmable gate arrays
Field-programmable gate array (FPGA)
Hardware
k-nearest neighbors (kNNs)
K-nearest neighbors algorithm
Kernel
Modules
near-storage acceleration
Projection
Random access memory
random projection
Solid state devices
Sparse matrices
Title RPkNN: An OpenCL-Based FPGA Implementation of the Dimensionality-Reduced kNN Algorithm Using Random Projection
URI https://ieeexplore.ieee.org/document/9714070
https://www.proquest.com/docview/2641995220
Volume 30
WOSCitedRecordID wos000758189100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9999
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014490
  issn: 1063-8210
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4qHvTgW1xdJQdvGk2T9BFv6-qqIMuyPvBWmibRRbeVdfX3O0m7i6II3lrIhNIv7XyTzHyD0H5kMmrD0BCtqSXCRAkBVhQQyzKlJReSMuWbTcTdbvLwIHsz6HBaC2OM8cln5shd-rN8XebvbqvsWDp1uRgC9Nk4jqparemJgRCyUh6IOEkgjpkUyFB5fHt_fXMFoSBjEKEK4Dv8mxPyXVV-_Iq9f-ks_-_JVtBSzSNxqwJ-Fc2YYg0tflEXXEdFv_fc7Z7gVoFd2kj7mpyCy9K407toYa8KPKwLjwpcWgxMEJ85rf9KpwPYOek7XVewgGlw6-WxHA3GT0PsswxwPyt0OcS9aicHTDbQXef8tn1J6vYKJGcyHBPOlaSSmpDaiANPsU7JPlBwq02QAe8Lk0xTagJthVWGau6UDHkeZ1mulVB8E80VZWG2EE7yMGQizpOQWaESpgBuocEgiLQxWdxAweR9p3mtPe5aYLykPgahMvUYpQ6jtMaogQ6mNq-V8safo9cdKtORNSAN1JzAmtYf51sKHNAVpjNGt3-32kELbu4qQaeJ5sajd7OL5vOP8eBttOfX3SfUI9R6
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5NGxLsYTAGomOAH_YGZo5_JDFvZVA2rYuqUtDeoji2YdqaTF3H38_ZSSsQCIm3RPIlkb8k95199x3AYeoq5pVy1FrmqXRpTpEVJdTzylgtpGbcxGYTWVHkFxd6sgFv1rUwzrmYfObehsO4l2_b-i4slR3poC6XYYC-FTpnqa5aa71nIKXutAdSQXOMZFYlMkwfzb6OP59iMMg5xqgSGY_4zQ3Fvip__Iyjhxk9_L9newQ7PZMkww76XdhwzWPY_kVfcA-a6eSqKN6RYUNC4sjxmL5Hp2XJaPJpSKIu8LwvPWpI6wlyQfIhqP13Sh3Iz-k0KLuiBV6GDK-_tYvL5fc5iXkGZFo1tp2TSbeWgyZP4Mvo4-z4hPYNFmjNtVpSIYxmmjnFfCqQqfigZZ8YPLUuqZD5qbyyjLnEeumNY1YELUNRZ1VVWyONeAqbTdu4Z0DyWikuszpX3EuTc4OAS4sGSWqdq7IBJKv5LutefTw0wbguYxTCdBkxKgNGZY_RAF6vbW467Y1_jt4LqKxH9oAM4GAFa9l_nrclssBQms452_-71Su4fzI7H5fj0-LsOTwI9-nSdQ5gc7m4cy_gXv1jeXm7eBnfwZ8VYNfF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RPkNN%3A+An+OpenCL-Based+FPGA+Implementation+of+the+Dimensionality-Reduced+kNN+Algorithm+Using+Random+Projection&rft.jtitle=IEEE+transactions+on+very+large+scale+integration+%28VLSI%29+systems&rft.au=Bank+Tavakoli%2C+Erfan&rft.au=Beygi%2C+Amir&rft.au=Yao%2C+Xuebin&rft.date=2022-04-01&rft.issn=1063-8210&rft.eissn=1557-9999&rft.volume=30&rft.issue=4&rft.spage=549&rft.epage=552&rft_id=info:doi/10.1109%2FTVLSI.2022.3147743&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVLSI_2022_3147743
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-8210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-8210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-8210&client=summon