Constrained multi-objective optimization problem model to design multi-band terahertz metamaterial absorbers

The multi-band metamaterial absorbers studied today offer optimal sensing performance by maximizing the absorption at resonance frequencies. A constrained multi-objective optimization problem (CMOP) model is proposed to intelligently obtain the optimized geometrical parameters of the designed MA for...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optical materials express Ročník 13; číslo 3; s. 739
Hlavní autoři: Ma, Limin, Wang, Zhenghua, Feng, Linghua, Dong, Wende, Guo, Wanlin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Washington Optical Society of America 01.03.2023
Témata:
ISSN:2159-3930, 2159-3930
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The multi-band metamaterial absorbers studied today offer optimal sensing performance by maximizing the absorption at resonance frequencies. A constrained multi-objective optimization problem (CMOP) model is proposed to intelligently obtain the optimized geometrical parameters of the designed MA for optimal multi-band absorption. The proposed multi-band terahertz metamaterial absorber is formed by a patterned metallic patches (symmetric snowflake-shaped resonators) layer and a continuous metallic layer separated by a dielectric layer. The simulation results show that there are three discrete narrow resonance peaks with the absorption of 99.1%, 90.0%, and 99.9% in the range of 0.5–2 THz after being optimized by the proposed CMOP model. The reflection loss of all resonance modes is improved significantly compared with the conventional brute-force approach. Specifically, reflection loss at the highest resonance frequency is suppressed from -6.76 dB to -28.17 dB. Consequently, the reported MA design can be used as a refractive index sensor with the highest sensitivity of 495 GHz/RIU and the figure of merit (FoM) of 8.9 RIU −1 through a refractive index ranging from 1.0 to 1.6 at the analyte thickness of 18.5 μm. It is worth noting that most of the liquid samples have a refractive index ranging from 1.0 to 1.6. Therefore, the reported sensor can be used for liquid detection with high sensitivity.
AbstractList The multi-band metamaterial absorbers studied today offer optimal sensing performance by maximizing the absorption at resonance frequencies. A constrained multi-objective optimization problem (CMOP) model is proposed to intelligently obtain the optimized geometrical parameters of the designed MA for optimal multi-band absorption. The proposed multi-band terahertz metamaterial absorber is formed by a patterned metallic patches (symmetric snowflake-shaped resonators) layer and a continuous metallic layer separated by a dielectric layer. The simulation results show that there are three discrete narrow resonance peaks with the absorption of 99.1%, 90.0%, and 99.9% in the range of 0.5–2 THz after being optimized by the proposed CMOP model. The reflection loss of all resonance modes is improved significantly compared with the conventional brute-force approach. Specifically, reflection loss at the highest resonance frequency is suppressed from -6.76 dB to -28.17 dB. Consequently, the reported MA design can be used as a refractive index sensor with the highest sensitivity of 495 GHz/RIU and the figure of merit (FoM) of 8.9 RIU−1 through a refractive index ranging from 1.0 to 1.6 at the analyte thickness of 18.5 μm. It is worth noting that most of the liquid samples have a refractive index ranging from 1.0 to 1.6. Therefore, the reported sensor can be used for liquid detection with high sensitivity.
The multi-band metamaterial absorbers studied today offer optimal sensing performance by maximizing the absorption at resonance frequencies. A constrained multi-objective optimization problem (CMOP) model is proposed to intelligently obtain the optimized geometrical parameters of the designed MA for optimal multi-band absorption. The proposed multi-band terahertz metamaterial absorber is formed by a patterned metallic patches (symmetric snowflake-shaped resonators) layer and a continuous metallic layer separated by a dielectric layer. The simulation results show that there are three discrete narrow resonance peaks with the absorption of 99.1%, 90.0%, and 99.9% in the range of 0.5–2 THz after being optimized by the proposed CMOP model. The reflection loss of all resonance modes is improved significantly compared with the conventional brute-force approach. Specifically, reflection loss at the highest resonance frequency is suppressed from -6.76 dB to -28.17 dB. Consequently, the reported MA design can be used as a refractive index sensor with the highest sensitivity of 495 GHz/RIU and the figure of merit (FoM) of 8.9 RIU −1 through a refractive index ranging from 1.0 to 1.6 at the analyte thickness of 18.5 μm. It is worth noting that most of the liquid samples have a refractive index ranging from 1.0 to 1.6. Therefore, the reported sensor can be used for liquid detection with high sensitivity.
Author Ma, Limin
Feng, Linghua
Dong, Wende
Wang, Zhenghua
Guo, Wanlin
Author_xml – sequence: 1
  givenname: Limin
  surname: Ma
  fullname: Ma, Limin
– sequence: 2
  givenname: Zhenghua
  surname: Wang
  fullname: Wang, Zhenghua
– sequence: 3
  givenname: Linghua
  surname: Feng
  fullname: Feng, Linghua
– sequence: 4
  givenname: Wende
  orcidid: 0000-0002-1410-2521
  surname: Dong
  fullname: Dong, Wende
– sequence: 5
  givenname: Wanlin
  surname: Guo
  fullname: Guo, Wanlin
BookMark eNptUE1LAzEQDVLBqr34CwLehK352Ox2j1LqB1R60fOSbCaaspvUJBXsrze1PYg4l5mB9968eedo5LwDhK4omVJelber58W0rGeiLE_QmFHRFLzhZPRrPkOTGNckl6jYjLEx6ufexRSkdaDxsO2TLbxaQ5fsJ2C_SXawO5msd3gTvOphwIPX0OPksYZo39yRpKTTOEGQ7xDSDg-Q5CDzbmWPpYo-KAjxEp0a2UeYHPsFer1fvMwfi-Xq4Wl-tyw61ohUcKaYmBlRd7UmNBtVVBlSVZIYyUTTyYqVRjVU6wooGCGByLJsDDecGS0Fv0DXB93s-WMLMbVrvw0un2xZPeOMsayWUeSA6oKPMYBpO5t-ft3n0beUtPtY2xxre4g1U27-UDbBDjJ8_Qf-BtkNfIo
CitedBy_id crossref_primary_10_3390_nano14131150
crossref_primary_10_1364_OE_569535
Cites_doi 10.1109/JPHOT.2022.3171864
10.1109/JSEN.2020.2994061
10.1038/srep08901
10.37188/lam.2021.010
10.1109/JSEN.2021.3112777
10.1364/OE.27.027523
10.1364/OE.19.017413
10.1103/PhysRevB.94.045407
10.2528/PIERM19040905
10.1134/S1063784221020195
10.1109/JSEN.2019.2918214
10.1063/5.0076379
10.1002/mmce.22387
10.1364/OME.383058
10.1364/OL.457309
10.1088/2040-8986/ac5b4f
10.1109/TTHZ.2015.2496313
10.1364/OE.454647
10.1063/1.4757879
10.1109/JIOT.2021.3081772
10.1088/0022-3727/49/16/165307
10.1007/s13320-019-0560-y
10.1007/s11468-021-01546-y
10.1002/lpor.201900445
10.1109/JSEN.2021.3112336
10.1109/JSEN.2019.2903731
10.1364/OME.424693
10.1364/OE.27.020165
10.1021/acsphotonics.5b00195
10.1109/JPHOT.2021.3088868
10.3390/photonics9100777
10.1039/C5NR03044G
10.1038/s41598-021-96564-5
10.1007/s11468-019-00936-7
10.1109/TIM.2020.3040484
10.1021/acsphotonics.7b00906
10.1364/OE.418020
10.1364/OE.444112
10.1109/LAWP.2016.2614498
10.1109/JSAC.2021.3071835
10.1364/OE.392993
ContentType Journal Article
Copyright Copyright Optical Society of America Mar 1, 2023
Copyright_xml – notice: Copyright Optical Society of America Mar 1, 2023
DBID AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1364/OME.478544
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2159-3930
ExternalDocumentID 10_1364_OME_478544
GroupedDBID AAFWJ
AAWJZ
AAYXX
ABGOQ
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BCNDV
CITATION
DSZJF
EBS
FRP
GROUPED_DOAJ
KQ8
M~E
OFLFD
OK1
OPJBK
ROL
ROS
TR6
7SP
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c295t-32b258f57c7d01628b1bf066a0fa259ca624fb91dd6e1ef5ae0a449f3f32fda53
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947578000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2159-3930
IngestDate Mon Jun 30 05:43:07 EDT 2025
Tue Nov 18 21:15:41 EST 2025
Sat Nov 29 01:48:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c295t-32b258f57c7d01628b1bf066a0fa259ca624fb91dd6e1ef5ae0a449f3f32fda53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1410-2521
OpenAccessLink https://doi.org/10.1364/ome.478544
PQID 2783222066
PQPubID 2049553
ParticipantIDs proquest_journals_2783222066
crossref_citationtrail_10_1364_OME_478544
crossref_primary_10_1364_OME_478544
PublicationCentury 2000
PublicationDate 2023-03-01
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Optical materials express
PublicationYear 2023
Publisher Optical Society of America
Publisher_xml – name: Optical Society of America
References Hojjati (ome-13-3-739-R34) 2021; 11
Ma (ome-13-3-739-R42) 2022; 9
El Gharbi (ome-13-3-739-R9) 2021; 21
Wang (ome-13-3-739-R29) 2016; 49
Amlashi (ome-13-3-739-R11) 2021; 39
Zhang (ome-13-3-739-R15) 2021; 11
Wang (ome-13-3-739-R44) 2020; 40
Zang (ome-13-3-739-R12) 2021; 2
Shi (ome-13-3-739-R16) 2016; 6
Dao (ome-13-3-739-R26) 2015; 2
Zhang (ome-13-3-739-R20) 2020; 10
Xiao (ome-13-3-739-R13) 2022; 24
He (ome-13-3-739-R27) 2019; 14
Zang (ome-13-3-739-R14) 2015; 5
Lai (ome-13-3-739-R6) 2022; 14
Honggang (ome-13-3-739-R37) 2019; 81
Elsawy (ome-13-3-739-R35) 2020; 14
Kayal (ome-13-3-739-R4) 2020; 30
Mayani (ome-13-3-739-R8) 2021; 70
Pu (ome-13-3-739-R32) 2011; 19
Zhang (ome-13-3-739-R30) 2015; 7
Kenney (ome-13-3-739-R19) 2017; 4
Keshavarz (ome-13-3-739-R18) 2019; 19
Sotsky (ome-13-3-739-R7) 2021; 66
Fang (ome-13-3-739-R25) 2022; 30
Chaudhary (ome-13-3-739-R36) 2021; 21
Wang (ome-13-3-739-R28) 2021; 13
Wu (ome-13-3-739-R2) 2020; 28
Weisenstein (ome-13-3-739-R22) 2022; 120
Ma (ome-13-3-739-R3) 2020; 10
Nadell (ome-13-3-739-R33) 2019; 27
Saadeldin (ome-13-3-739-R43) 2019; 19
Manjakkal (ome-13-3-739-R1) 2021; 8
Romain (ome-13-3-739-R23) 2016; 94
Pandit (ome-13-3-739-R10) 2020; 20
Kuzin (ome-13-3-739-R5) 2022; 47
Thompson (ome-13-3-739-R41) 2021; 29
Luo (ome-13-3-739-R17) 2019; 27
Appasani (ome-13-3-739-R24) 2022; 17
Lalbakhsh (ome-13-3-739-R38) 2017; 16
Shen (ome-13-3-739-R31) 2012; 101
Lv (ome-13-3-739-R21) 2021; 29
References_xml – volume: 14
  start-page: 1
  year: 2022
  ident: ome-13-3-739-R6
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2022.3171864
– volume: 20
  start-page: 10582
  year: 2020
  ident: ome-13-3-739-R10
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2994061
– volume: 5
  start-page: 8901
  year: 2015
  ident: ome-13-3-739-R14
  publication-title: Sci. Rep.
  doi: 10.1038/srep08901
– volume: 2
  start-page: 148
  year: 2021
  ident: ome-13-3-739-R12
  publication-title: Light: Advanced Manufacturing
  doi: 10.37188/lam.2021.010
– volume: 21
  start-page: 23751
  year: 2021
  ident: ome-13-3-739-R9
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3112777
– volume: 27
  start-page: 27523
  year: 2019
  ident: ome-13-3-739-R33
  publication-title: Opt. Express
  doi: 10.1364/OE.27.027523
– volume: 19
  start-page: 17413
  year: 2011
  ident: ome-13-3-739-R32
  publication-title: Opt. Express
  doi: 10.1364/OE.19.017413
– volume: 94
  start-page: 045407
  year: 2016
  ident: ome-13-3-739-R23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.045407
– volume: 81
  start-page: 97
  year: 2019
  ident: ome-13-3-739-R37
  publication-title: Prog. Electromagn. Res. M
  doi: 10.2528/PIERM19040905
– volume: 66
  start-page: 305
  year: 2021
  ident: ome-13-3-739-R7
  publication-title: Tech. Phys.
  doi: 10.1134/S1063784221020195
– volume: 40
  start-page: 19
  year: 2020
  ident: ome-13-3-739-R44
  publication-title: Acta Opt. Sin.
– volume: 19
  start-page: 7993
  year: 2019
  ident: ome-13-3-739-R43
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2918214
– volume: 120
  start-page: 053702
  year: 2022
  ident: ome-13-3-739-R22
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0076379
– volume: 30
  start-page: e22387
  year: 2020
  ident: ome-13-3-739-R4
  publication-title: International Journal of Rf and Microwave Computer-Aided Engineering
  doi: 10.1002/mmce.22387
– volume: 10
  start-page: 282
  year: 2020
  ident: ome-13-3-739-R20
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.383058
– volume: 47
  start-page: 2358
  year: 2022
  ident: ome-13-3-739-R5
  publication-title: Opt. Lett.
  doi: 10.1364/OL.457309
– volume: 24
  start-page: 055102
  year: 2022
  ident: ome-13-3-739-R13
  publication-title: J. Opt.
  doi: 10.1088/2040-8986/ac5b4f
– volume: 6
  start-page: 40
  year: 2016
  ident: ome-13-3-739-R16
  publication-title: IEEE Trans. Terahertz Sci. Technol.
  doi: 10.1109/TTHZ.2015.2496313
– volume: 30
  start-page: 16630
  year: 2022
  ident: ome-13-3-739-R25
  publication-title: Opt. Express
  doi: 10.1364/OE.454647
– volume: 101
  start-page: 154102
  year: 2012
  ident: ome-13-3-739-R31
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4757879
– volume: 8
  start-page: 13805
  year: 2021
  ident: ome-13-3-739-R1
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3081772
– volume: 49
  start-page: 165307
  year: 2016
  ident: ome-13-3-739-R29
  publication-title: J. Phys. D-Appl. Phys.
  doi: 10.1088/0022-3727/49/16/165307
– volume: 10
  start-page: 7
  year: 2020
  ident: ome-13-3-739-R3
  publication-title: Photonic Sens.
  doi: 10.1007/s13320-019-0560-y
– volume: 17
  start-page: 519
  year: 2022
  ident: ome-13-3-739-R24
  publication-title: Plasmonics
  doi: 10.1007/s11468-021-01546-y
– volume: 14
  start-page: 1900445
  year: 2020
  ident: ome-13-3-739-R35
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201900445
– volume: 21
  start-page: 24028
  year: 2021
  ident: ome-13-3-739-R36
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3112336
– volume: 19
  start-page: 5161
  year: 2019
  ident: ome-13-3-739-R18
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2903731
– volume: 11
  start-page: 1470
  year: 2021
  ident: ome-13-3-739-R15
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.424693
– volume: 27
  start-page: 20165
  year: 2019
  ident: ome-13-3-739-R17
  publication-title: Opt. Express
  doi: 10.1364/OE.27.020165
– volume: 2
  start-page: 964
  year: 2015
  ident: ome-13-3-739-R26
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.5b00195
– volume: 13
  start-page: 4600105
  year: 2021
  ident: ome-13-3-739-R28
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2021.3088868
– volume: 9
  start-page: 777
  year: 2022
  ident: ome-13-3-739-R42
  publication-title: Photonics
  doi: 10.3390/photonics9100777
– volume: 7
  start-page: 12682
  year: 2015
  ident: ome-13-3-739-R30
  publication-title: Nanoscale
  doi: 10.1039/C5NR03044G
– volume: 11
  start-page: 17110
  year: 2021
  ident: ome-13-3-739-R34
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-96564-5
– volume: 14
  start-page: 1303
  year: 2019
  ident: ome-13-3-739-R27
  publication-title: Plasmonics
  doi: 10.1007/s11468-019-00936-7
– volume: 70
  start-page: 1
  year: 2021
  ident: ome-13-3-739-R8
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.3040484
– volume: 4
  start-page: 2604
  year: 2017
  ident: ome-13-3-739-R19
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b00906
– volume: 29
  start-page: 5437
  year: 2021
  ident: ome-13-3-739-R21
  publication-title: Opt. Express
  doi: 10.1364/OE.418020
– volume: 29
  start-page: 43421
  year: 2021
  ident: ome-13-3-739-R41
  publication-title: Opt. Express
  doi: 10.1364/OE.444112
– volume: 16
  start-page: 912
  year: 2017
  ident: ome-13-3-739-R38
  publication-title: Antennas Wirel. Propag. Lett.
  doi: 10.1109/LAWP.2016.2614498
– volume: 39
  start-page: 1797
  year: 2021
  ident: ome-13-3-739-R11
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2021.3071835
– volume: 28
  start-page: 16594
  year: 2020
  ident: ome-13-3-739-R2
  publication-title: Opt. Express
  doi: 10.1364/OE.392993
SSID ssj0000562822
Score 2.3129249
Snippet The multi-band metamaterial absorbers studied today offer optimal sensing performance by maximizing the absorption at resonance frequencies. A constrained...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 739
SubjectTerms Absorbers
Absorbers (materials)
Absorption
Design optimization
Figure of merit
Force reflection
Metamaterials
Multiple objective analysis
Refractivity
Resonance
Sensitivity
Terahertz frequencies
Title Constrained multi-objective optimization problem model to design multi-band terahertz metamaterial absorbers
URI https://www.proquest.com/docview/2783222066
Volume 13
WOSCitedRecordID wos000947578000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2159-3930
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000562822
  issn: 2159-3930
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2159-3930
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000562822
  issn: 2159-3930
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWAhIXxFNtKZUlEBJaBZI4ieMjgq04tLsctuqKS2Qndlu0TbabtKo48C_4v4wfeSwgBAcu0crrTWLPtzOfx-MZhF76gmszFnhUKepFOaEej5T0RFKksZQU1m-22ASdTtPFgn0ajb63Z2Gul7Qs05sbtvqvooY2ELY-OvsP4u5uCg3wGYQOVxA7XP9K8LoEpyn8AFTShAt6lfhi1dq4AgVx4U5ejl0tGVsMR3PQwkRzuB8JE1opQRfJdfNVV5rmQG7NAMZc1NVauNj5ltrOVtYt3vaqdfWALsDDOL2tE-DivAPkifNWfz6T5enZVWciYEJPncdg2PzBxQ-faL_90F8Rkj5gy65u3cu0Qamab9u9KWuRjOoDHsI8wtyOTaunyQCPZKB0qU2H9IsxIEkEwpodTd5ENI1tmsnNjNvTWXZwfHiYzSeL-avVpaeLkelNe1eZ5Ra6HdKY6UjBo2-9605zRuBVLtktPOVt_4xNerNp3Q1lmT9A991aA7-zGHmIRrJ8hO6amN-8foyWA6Tgn5CCh0jBDinYIAU3FbZIwT1ScIcUPEQK7pDyBB0fTObvP3qu-IaXhyxuPBKKME5VTHNawLIgTEUgFPBT7isOS-acJ2GkBAuKIpGBVDGXPo8ipogioSp4TJ6irbIq5TbCvGCU-4VMRB5EMfcZZ0kuaFDATXwa8h30up2zLHeZ6fXol5nZbk2iDOY3s_O7g150fVc2H8tve-21U5-5v2ad6ZoywIZhDLt__voZutcDdw9tNesr-Rzdya-b83q9b7w2-wYRPwCfpJWh
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+multi-objective+optimization+problem+model+to+design+multi-band+terahertz+metamaterial+absorbers&rft.jtitle=Optical+materials+express&rft.au=Ma%2C+Limin&rft.au=Wang%2C+Zhenghua&rft.au=Feng%2C+Linghua&rft.au=Dong%2C+Wende&rft.date=2023-03-01&rft.pub=Optical+Society+of+America&rft.eissn=2159-3930&rft.volume=13&rft.issue=3&rft.spage=739&rft_id=info:doi/10.1364%2FOME.478544&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2159-3930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2159-3930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2159-3930&client=summon