Constrained multi-objective optimization problem model to design multi-band terahertz metamaterial absorbers
The multi-band metamaterial absorbers studied today offer optimal sensing performance by maximizing the absorption at resonance frequencies. A constrained multi-objective optimization problem (CMOP) model is proposed to intelligently obtain the optimized geometrical parameters of the designed MA for...
Uloženo v:
| Vydáno v: | Optical materials express Ročník 13; číslo 3; s. 739 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Washington
Optical Society of America
01.03.2023
|
| Témata: | |
| ISSN: | 2159-3930, 2159-3930 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The multi-band metamaterial absorbers studied today offer optimal sensing performance by maximizing the absorption at resonance frequencies. A constrained multi-objective optimization problem (CMOP) model is proposed to intelligently obtain the optimized geometrical parameters of the designed MA for optimal multi-band absorption. The proposed multi-band terahertz metamaterial absorber is formed by a patterned metallic patches (symmetric snowflake-shaped resonators) layer and a continuous metallic layer separated by a dielectric layer. The simulation results show that there are three discrete narrow resonance peaks with the absorption of 99.1%, 90.0%, and 99.9% in the range of 0.5–2 THz after being optimized by the proposed CMOP model. The reflection loss of all resonance modes is improved significantly compared with the conventional brute-force approach. Specifically, reflection loss at the highest resonance frequency is suppressed from -6.76 dB to -28.17 dB. Consequently, the reported MA design can be used as a refractive index sensor with the highest sensitivity of 495 GHz/RIU and the figure of merit (FoM) of 8.9 RIU
−1
through a refractive index ranging from 1.0 to 1.6 at the analyte thickness of 18.5 μm. It is worth noting that most of the liquid samples have a refractive index ranging from 1.0 to 1.6. Therefore, the reported sensor can be used for liquid detection with high sensitivity. |
|---|---|
| AbstractList | The multi-band metamaterial absorbers studied today offer optimal sensing performance by maximizing the absorption at resonance frequencies. A constrained multi-objective optimization problem (CMOP) model is proposed to intelligently obtain the optimized geometrical parameters of the designed MA for optimal multi-band absorption. The proposed multi-band terahertz metamaterial absorber is formed by a patterned metallic patches (symmetric snowflake-shaped resonators) layer and a continuous metallic layer separated by a dielectric layer. The simulation results show that there are three discrete narrow resonance peaks with the absorption of 99.1%, 90.0%, and 99.9% in the range of 0.5–2 THz after being optimized by the proposed CMOP model. The reflection loss of all resonance modes is improved significantly compared with the conventional brute-force approach. Specifically, reflection loss at the highest resonance frequency is suppressed from -6.76 dB to -28.17 dB. Consequently, the reported MA design can be used as a refractive index sensor with the highest sensitivity of 495 GHz/RIU and the figure of merit (FoM) of 8.9 RIU−1 through a refractive index ranging from 1.0 to 1.6 at the analyte thickness of 18.5 μm. It is worth noting that most of the liquid samples have a refractive index ranging from 1.0 to 1.6. Therefore, the reported sensor can be used for liquid detection with high sensitivity. The multi-band metamaterial absorbers studied today offer optimal sensing performance by maximizing the absorption at resonance frequencies. A constrained multi-objective optimization problem (CMOP) model is proposed to intelligently obtain the optimized geometrical parameters of the designed MA for optimal multi-band absorption. The proposed multi-band terahertz metamaterial absorber is formed by a patterned metallic patches (symmetric snowflake-shaped resonators) layer and a continuous metallic layer separated by a dielectric layer. The simulation results show that there are three discrete narrow resonance peaks with the absorption of 99.1%, 90.0%, and 99.9% in the range of 0.5–2 THz after being optimized by the proposed CMOP model. The reflection loss of all resonance modes is improved significantly compared with the conventional brute-force approach. Specifically, reflection loss at the highest resonance frequency is suppressed from -6.76 dB to -28.17 dB. Consequently, the reported MA design can be used as a refractive index sensor with the highest sensitivity of 495 GHz/RIU and the figure of merit (FoM) of 8.9 RIU −1 through a refractive index ranging from 1.0 to 1.6 at the analyte thickness of 18.5 μm. It is worth noting that most of the liquid samples have a refractive index ranging from 1.0 to 1.6. Therefore, the reported sensor can be used for liquid detection with high sensitivity. |
| Author | Ma, Limin Feng, Linghua Dong, Wende Wang, Zhenghua Guo, Wanlin |
| Author_xml | – sequence: 1 givenname: Limin surname: Ma fullname: Ma, Limin – sequence: 2 givenname: Zhenghua surname: Wang fullname: Wang, Zhenghua – sequence: 3 givenname: Linghua surname: Feng fullname: Feng, Linghua – sequence: 4 givenname: Wende orcidid: 0000-0002-1410-2521 surname: Dong fullname: Dong, Wende – sequence: 5 givenname: Wanlin surname: Guo fullname: Guo, Wanlin |
| BookMark | eNptUE1LAzEQDVLBqr34CwLehK352Ox2j1LqB1R60fOSbCaaspvUJBXsrze1PYg4l5mB9968eedo5LwDhK4omVJelber58W0rGeiLE_QmFHRFLzhZPRrPkOTGNckl6jYjLEx6ufexRSkdaDxsO2TLbxaQ5fsJ2C_SXawO5msd3gTvOphwIPX0OPksYZo39yRpKTTOEGQ7xDSDg-Q5CDzbmWPpYo-KAjxEp0a2UeYHPsFer1fvMwfi-Xq4Wl-tyw61ohUcKaYmBlRd7UmNBtVVBlSVZIYyUTTyYqVRjVU6wooGCGByLJsDDecGS0Fv0DXB93s-WMLMbVrvw0un2xZPeOMsayWUeSA6oKPMYBpO5t-ft3n0beUtPtY2xxre4g1U27-UDbBDjJ8_Qf-BtkNfIo |
| CitedBy_id | crossref_primary_10_3390_nano14131150 crossref_primary_10_1364_OE_569535 |
| Cites_doi | 10.1109/JPHOT.2022.3171864 10.1109/JSEN.2020.2994061 10.1038/srep08901 10.37188/lam.2021.010 10.1109/JSEN.2021.3112777 10.1364/OE.27.027523 10.1364/OE.19.017413 10.1103/PhysRevB.94.045407 10.2528/PIERM19040905 10.1134/S1063784221020195 10.1109/JSEN.2019.2918214 10.1063/5.0076379 10.1002/mmce.22387 10.1364/OME.383058 10.1364/OL.457309 10.1088/2040-8986/ac5b4f 10.1109/TTHZ.2015.2496313 10.1364/OE.454647 10.1063/1.4757879 10.1109/JIOT.2021.3081772 10.1088/0022-3727/49/16/165307 10.1007/s13320-019-0560-y 10.1007/s11468-021-01546-y 10.1002/lpor.201900445 10.1109/JSEN.2021.3112336 10.1109/JSEN.2019.2903731 10.1364/OME.424693 10.1364/OE.27.020165 10.1021/acsphotonics.5b00195 10.1109/JPHOT.2021.3088868 10.3390/photonics9100777 10.1039/C5NR03044G 10.1038/s41598-021-96564-5 10.1007/s11468-019-00936-7 10.1109/TIM.2020.3040484 10.1021/acsphotonics.7b00906 10.1364/OE.418020 10.1364/OE.444112 10.1109/LAWP.2016.2614498 10.1109/JSAC.2021.3071835 10.1364/OE.392993 |
| ContentType | Journal Article |
| Copyright | Copyright Optical Society of America Mar 1, 2023 |
| Copyright_xml | – notice: Copyright Optical Society of America Mar 1, 2023 |
| DBID | AAYXX CITATION 7SP 7U5 8FD H8D L7M |
| DOI | 10.1364/OME.478544 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Aerospace Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2159-3930 |
| ExternalDocumentID | 10_1364_OME_478544 |
| GroupedDBID | AAFWJ AAWJZ AAYXX ABGOQ ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BCNDV CITATION DSZJF EBS FRP GROUPED_DOAJ KQ8 M~E OFLFD OK1 OPJBK ROL ROS TR6 7SP 7U5 8FD H8D L7M |
| ID | FETCH-LOGICAL-c295t-32b258f57c7d01628b1bf066a0fa259ca624fb91dd6e1ef5ae0a449f3f32fda53 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947578000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2159-3930 |
| IngestDate | Mon Jun 30 05:43:07 EDT 2025 Tue Nov 18 21:15:41 EST 2025 Sat Nov 29 01:48:13 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c295t-32b258f57c7d01628b1bf066a0fa259ca624fb91dd6e1ef5ae0a449f3f32fda53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1410-2521 |
| OpenAccessLink | https://doi.org/10.1364/ome.478544 |
| PQID | 2783222066 |
| PQPubID | 2049553 |
| ParticipantIDs | proquest_journals_2783222066 crossref_citationtrail_10_1364_OME_478544 crossref_primary_10_1364_OME_478544 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 20230301 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Optical materials express |
| PublicationYear | 2023 |
| Publisher | Optical Society of America |
| Publisher_xml | – name: Optical Society of America |
| References | Hojjati (ome-13-3-739-R34) 2021; 11 Ma (ome-13-3-739-R42) 2022; 9 El Gharbi (ome-13-3-739-R9) 2021; 21 Wang (ome-13-3-739-R29) 2016; 49 Amlashi (ome-13-3-739-R11) 2021; 39 Zhang (ome-13-3-739-R15) 2021; 11 Wang (ome-13-3-739-R44) 2020; 40 Zang (ome-13-3-739-R12) 2021; 2 Shi (ome-13-3-739-R16) 2016; 6 Dao (ome-13-3-739-R26) 2015; 2 Zhang (ome-13-3-739-R20) 2020; 10 Xiao (ome-13-3-739-R13) 2022; 24 He (ome-13-3-739-R27) 2019; 14 Zang (ome-13-3-739-R14) 2015; 5 Lai (ome-13-3-739-R6) 2022; 14 Honggang (ome-13-3-739-R37) 2019; 81 Elsawy (ome-13-3-739-R35) 2020; 14 Kayal (ome-13-3-739-R4) 2020; 30 Mayani (ome-13-3-739-R8) 2021; 70 Pu (ome-13-3-739-R32) 2011; 19 Zhang (ome-13-3-739-R30) 2015; 7 Kenney (ome-13-3-739-R19) 2017; 4 Keshavarz (ome-13-3-739-R18) 2019; 19 Sotsky (ome-13-3-739-R7) 2021; 66 Fang (ome-13-3-739-R25) 2022; 30 Chaudhary (ome-13-3-739-R36) 2021; 21 Wang (ome-13-3-739-R28) 2021; 13 Wu (ome-13-3-739-R2) 2020; 28 Weisenstein (ome-13-3-739-R22) 2022; 120 Ma (ome-13-3-739-R3) 2020; 10 Nadell (ome-13-3-739-R33) 2019; 27 Saadeldin (ome-13-3-739-R43) 2019; 19 Manjakkal (ome-13-3-739-R1) 2021; 8 Romain (ome-13-3-739-R23) 2016; 94 Pandit (ome-13-3-739-R10) 2020; 20 Kuzin (ome-13-3-739-R5) 2022; 47 Thompson (ome-13-3-739-R41) 2021; 29 Luo (ome-13-3-739-R17) 2019; 27 Appasani (ome-13-3-739-R24) 2022; 17 Lalbakhsh (ome-13-3-739-R38) 2017; 16 Shen (ome-13-3-739-R31) 2012; 101 Lv (ome-13-3-739-R21) 2021; 29 |
| References_xml | – volume: 14 start-page: 1 year: 2022 ident: ome-13-3-739-R6 publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2022.3171864 – volume: 20 start-page: 10582 year: 2020 ident: ome-13-3-739-R10 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2994061 – volume: 5 start-page: 8901 year: 2015 ident: ome-13-3-739-R14 publication-title: Sci. Rep. doi: 10.1038/srep08901 – volume: 2 start-page: 148 year: 2021 ident: ome-13-3-739-R12 publication-title: Light: Advanced Manufacturing doi: 10.37188/lam.2021.010 – volume: 21 start-page: 23751 year: 2021 ident: ome-13-3-739-R9 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3112777 – volume: 27 start-page: 27523 year: 2019 ident: ome-13-3-739-R33 publication-title: Opt. Express doi: 10.1364/OE.27.027523 – volume: 19 start-page: 17413 year: 2011 ident: ome-13-3-739-R32 publication-title: Opt. Express doi: 10.1364/OE.19.017413 – volume: 94 start-page: 045407 year: 2016 ident: ome-13-3-739-R23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.045407 – volume: 81 start-page: 97 year: 2019 ident: ome-13-3-739-R37 publication-title: Prog. Electromagn. Res. M doi: 10.2528/PIERM19040905 – volume: 66 start-page: 305 year: 2021 ident: ome-13-3-739-R7 publication-title: Tech. Phys. doi: 10.1134/S1063784221020195 – volume: 40 start-page: 19 year: 2020 ident: ome-13-3-739-R44 publication-title: Acta Opt. Sin. – volume: 19 start-page: 7993 year: 2019 ident: ome-13-3-739-R43 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2918214 – volume: 120 start-page: 053702 year: 2022 ident: ome-13-3-739-R22 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0076379 – volume: 30 start-page: e22387 year: 2020 ident: ome-13-3-739-R4 publication-title: International Journal of Rf and Microwave Computer-Aided Engineering doi: 10.1002/mmce.22387 – volume: 10 start-page: 282 year: 2020 ident: ome-13-3-739-R20 publication-title: Opt. Mater. Express doi: 10.1364/OME.383058 – volume: 47 start-page: 2358 year: 2022 ident: ome-13-3-739-R5 publication-title: Opt. Lett. doi: 10.1364/OL.457309 – volume: 24 start-page: 055102 year: 2022 ident: ome-13-3-739-R13 publication-title: J. Opt. doi: 10.1088/2040-8986/ac5b4f – volume: 6 start-page: 40 year: 2016 ident: ome-13-3-739-R16 publication-title: IEEE Trans. Terahertz Sci. Technol. doi: 10.1109/TTHZ.2015.2496313 – volume: 30 start-page: 16630 year: 2022 ident: ome-13-3-739-R25 publication-title: Opt. Express doi: 10.1364/OE.454647 – volume: 101 start-page: 154102 year: 2012 ident: ome-13-3-739-R31 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4757879 – volume: 8 start-page: 13805 year: 2021 ident: ome-13-3-739-R1 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3081772 – volume: 49 start-page: 165307 year: 2016 ident: ome-13-3-739-R29 publication-title: J. Phys. D-Appl. Phys. doi: 10.1088/0022-3727/49/16/165307 – volume: 10 start-page: 7 year: 2020 ident: ome-13-3-739-R3 publication-title: Photonic Sens. doi: 10.1007/s13320-019-0560-y – volume: 17 start-page: 519 year: 2022 ident: ome-13-3-739-R24 publication-title: Plasmonics doi: 10.1007/s11468-021-01546-y – volume: 14 start-page: 1900445 year: 2020 ident: ome-13-3-739-R35 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201900445 – volume: 21 start-page: 24028 year: 2021 ident: ome-13-3-739-R36 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3112336 – volume: 19 start-page: 5161 year: 2019 ident: ome-13-3-739-R18 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2903731 – volume: 11 start-page: 1470 year: 2021 ident: ome-13-3-739-R15 publication-title: Opt. Mater. Express doi: 10.1364/OME.424693 – volume: 27 start-page: 20165 year: 2019 ident: ome-13-3-739-R17 publication-title: Opt. Express doi: 10.1364/OE.27.020165 – volume: 2 start-page: 964 year: 2015 ident: ome-13-3-739-R26 publication-title: ACS Photonics doi: 10.1021/acsphotonics.5b00195 – volume: 13 start-page: 4600105 year: 2021 ident: ome-13-3-739-R28 publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2021.3088868 – volume: 9 start-page: 777 year: 2022 ident: ome-13-3-739-R42 publication-title: Photonics doi: 10.3390/photonics9100777 – volume: 7 start-page: 12682 year: 2015 ident: ome-13-3-739-R30 publication-title: Nanoscale doi: 10.1039/C5NR03044G – volume: 11 start-page: 17110 year: 2021 ident: ome-13-3-739-R34 publication-title: Sci. Rep. doi: 10.1038/s41598-021-96564-5 – volume: 14 start-page: 1303 year: 2019 ident: ome-13-3-739-R27 publication-title: Plasmonics doi: 10.1007/s11468-019-00936-7 – volume: 70 start-page: 1 year: 2021 ident: ome-13-3-739-R8 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.3040484 – volume: 4 start-page: 2604 year: 2017 ident: ome-13-3-739-R19 publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b00906 – volume: 29 start-page: 5437 year: 2021 ident: ome-13-3-739-R21 publication-title: Opt. Express doi: 10.1364/OE.418020 – volume: 29 start-page: 43421 year: 2021 ident: ome-13-3-739-R41 publication-title: Opt. Express doi: 10.1364/OE.444112 – volume: 16 start-page: 912 year: 2017 ident: ome-13-3-739-R38 publication-title: Antennas Wirel. Propag. Lett. doi: 10.1109/LAWP.2016.2614498 – volume: 39 start-page: 1797 year: 2021 ident: ome-13-3-739-R11 publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2021.3071835 – volume: 28 start-page: 16594 year: 2020 ident: ome-13-3-739-R2 publication-title: Opt. Express doi: 10.1364/OE.392993 |
| SSID | ssj0000562822 |
| Score | 2.3129249 |
| Snippet | The multi-band metamaterial absorbers studied today offer optimal sensing performance by maximizing the absorption at resonance frequencies. A constrained... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 739 |
| SubjectTerms | Absorbers Absorbers (materials) Absorption Design optimization Figure of merit Force reflection Metamaterials Multiple objective analysis Refractivity Resonance Sensitivity Terahertz frequencies |
| Title | Constrained multi-objective optimization problem model to design multi-band terahertz metamaterial absorbers |
| URI | https://www.proquest.com/docview/2783222066 |
| Volume | 13 |
| WOSCitedRecordID | wos000947578000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2159-3930 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000562822 issn: 2159-3930 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2159-3930 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000562822 issn: 2159-3930 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWAhIXxFNtKZUlEBJaBZI4ieMjgq04tLsctuqKS2Qndlu0TbabtKo48C_4v4wfeSwgBAcu0crrTWLPtzOfx-MZhF76gmszFnhUKepFOaEej5T0RFKksZQU1m-22ASdTtPFgn0ajb63Z2Gul7Qs05sbtvqvooY2ELY-OvsP4u5uCg3wGYQOVxA7XP9K8LoEpyn8AFTShAt6lfhi1dq4AgVx4U5ejl0tGVsMR3PQwkRzuB8JE1opQRfJdfNVV5rmQG7NAMZc1NVauNj5ltrOVtYt3vaqdfWALsDDOL2tE-DivAPkifNWfz6T5enZVWciYEJPncdg2PzBxQ-faL_90F8Rkj5gy65u3cu0Qamab9u9KWuRjOoDHsI8wtyOTaunyQCPZKB0qU2H9IsxIEkEwpodTd5ENI1tmsnNjNvTWXZwfHiYzSeL-avVpaeLkelNe1eZ5Ra6HdKY6UjBo2-9605zRuBVLtktPOVt_4xNerNp3Q1lmT9A991aA7-zGHmIRrJ8hO6amN-8foyWA6Tgn5CCh0jBDinYIAU3FbZIwT1ScIcUPEQK7pDyBB0fTObvP3qu-IaXhyxuPBKKME5VTHNawLIgTEUgFPBT7isOS-acJ2GkBAuKIpGBVDGXPo8ipogioSp4TJ6irbIq5TbCvGCU-4VMRB5EMfcZZ0kuaFDATXwa8h30up2zLHeZ6fXol5nZbk2iDOY3s_O7g150fVc2H8tve-21U5-5v2ad6ZoywIZhDLt__voZutcDdw9tNesr-Rzdya-b83q9b7w2-wYRPwCfpJWh |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+multi-objective+optimization+problem+model+to+design+multi-band+terahertz+metamaterial+absorbers&rft.jtitle=Optical+materials+express&rft.au=Ma%2C+Limin&rft.au=Wang%2C+Zhenghua&rft.au=Feng%2C+Linghua&rft.au=Dong%2C+Wende&rft.date=2023-03-01&rft.pub=Optical+Society+of+America&rft.eissn=2159-3930&rft.volume=13&rft.issue=3&rft.spage=739&rft_id=info:doi/10.1364%2FOME.478544&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2159-3930&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2159-3930&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2159-3930&client=summon |