Causal Contextual Prediction for Learned Image Compression

Over the past several years, we have witnessed impressive progress in the field of learned image compression. Recent learned image codecs are commonly based on autoencoders, that first encode an image into low-dimensional latent representations and then decode them for reconstruction purposes. To ca...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems for video technology Ročník 32; číslo 4; s. 2329 - 2341
Hlavní autoři: Guo, Zongyu, Zhang, Zhizheng, Feng, Runsen, Chen, Zhibo
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1051-8215, 1558-2205
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Over the past several years, we have witnessed impressive progress in the field of learned image compression. Recent learned image codecs are commonly based on autoencoders, that first encode an image into low-dimensional latent representations and then decode them for reconstruction purposes. To capture spatial dependencies in the latent space, prior works exploit hyperprior and spatial context model to build an entropy model, which estimates the bit-rate for end-to-end rate-distortion optimization. However, such an entropy model is suboptimal from two aspects: (1) It fails to capture global-scope spatial correlations among the latents. (2) Cross-channel relationships of the latents remain unexplored. In this paper, we propose the concept of separate entropy coding to leverage a serial decoding process for causal contextual entropy prediction in the latent space. A causal context model is proposed that separates the latents across channels and makes use of channel-wise relationships to generate highly informative adjacent contexts. Furthermore, we propose a causal global prediction model to find global reference points for accurate predictions of undecoded points. Both these two models facilitate entropy estimation without the transmission of overhead. In addition, we further adopt a new group-separated attention module to build more powerful transform networks. Experimental results demonstrate that our full image compression model outperforms standard VVC/H.266 codec on Kodak dataset in terms of both PSNR and MS-SSIM, yielding the state-of-the-art rate-distortion performance.
AbstractList Over the past several years, we have witnessed impressive progress in the field of learned image compression. Recent learned image codecs are commonly based on autoencoders, that first encode an image into low-dimensional latent representations and then decode them for reconstruction purposes. To capture spatial dependencies in the latent space, prior works exploit hyperprior and spatial context model to build an entropy model, which estimates the bit-rate for end-to-end rate-distortion optimization. However, such an entropy model is suboptimal from two aspects: (1) It fails to capture global-scope spatial correlations among the latents. (2) Cross-channel relationships of the latents remain unexplored. In this paper, we propose the concept of separate entropy coding to leverage a serial decoding process for causal contextual entropy prediction in the latent space. A causal context model is proposed that separates the latents across channels and makes use of channel-wise relationships to generate highly informative adjacent contexts. Furthermore, we propose a causal global prediction model to find global reference points for accurate predictions of undecoded points. Both these two models facilitate entropy estimation without the transmission of overhead. In addition, we further adopt a new group-separated attention module to build more powerful transform networks. Experimental results demonstrate that our full image compression model outperforms standard VVC/H.266 codec on Kodak dataset in terms of both PSNR and MS-SSIM, yielding the state-of-the-art rate-distortion performance.
Author Chen, Zhibo
Zhang, Zhizheng
Feng, Runsen
Guo, Zongyu
Author_xml – sequence: 1
  givenname: Zongyu
  orcidid: 0000-0002-3770-3442
  surname: Guo
  fullname: Guo, Zongyu
  organization: Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
– sequence: 2
  givenname: Zhizheng
  orcidid: 0000-0002-5360-7565
  surname: Zhang
  fullname: Zhang, Zhizheng
  organization: Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
– sequence: 3
  givenname: Runsen
  orcidid: 0000-0001-6608-0785
  surname: Feng
  fullname: Feng, Runsen
  organization: Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
– sequence: 4
  givenname: Zhibo
  orcidid: 0000-0002-8525-5066
  surname: Chen
  fullname: Chen, Zhibo
  email: chenzhibo@ustc.edu.cn
  organization: Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
BookMark eNp9kE9Lw0AQxRepYFv9AnoJeE7dnd1Ndr1J8B8UFKxel-lmIiltUncT0G9vaosHD57mwbzfPOZN2KhpG2LsXPCZENxeLYqXt8UMOIiZ5MYqK47YWGhtUgCuR4PmWqQGhD5hkxhXnAtlVD5m1wX2EddJ0TYdfXb9IJ8DlbXv6rZJqjYkc8LQUJk8bvCdBt9mGyjGYXvKjitcRzo7zCl7vbtdFA_p_On-sbiZpx6s7lIp0IBBZYmX1kv0FrUxACC8QgDNtUQ0VGGZYaZI47L0XFdyKXIvl7mUU3a5v7sN7UdPsXOrtg_NEOkgU7kCrTM-uGDv8qGNMVDltqHeYPhygrtdR-6nI7fryB06GiDzB_J1h7vXu4D1-n_0Yo_WRPSbZZXWUln5DYfmdis
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TNNLS_2023_3330864
crossref_primary_10_1109_TCSVT_2023_3323015
crossref_primary_10_1109_TIP_2023_3276333
crossref_primary_10_1109_TCSVT_2025_3551780
crossref_primary_10_1007_s10586_025_05133_2
crossref_primary_10_1109_TCSVT_2022_3199472
crossref_primary_10_1109_TCSVT_2024_3369638
crossref_primary_10_1109_TCSVT_2024_3395481
crossref_primary_10_1145_3661824
crossref_primary_10_1109_TMM_2025_3535279
crossref_primary_10_1109_TIP_2025_3550013
crossref_primary_10_1109_TIP_2025_3567830
crossref_primary_10_1016_j_dsp_2024_104953
crossref_primary_10_1109_TGRS_2024_3483312
crossref_primary_10_1016_j_jvcir_2025_104544
crossref_primary_10_1109_TGRS_2024_3483871
crossref_primary_10_1016_j_sigpro_2023_109128
crossref_primary_10_1109_TCSVT_2024_3415823
crossref_primary_10_1016_j_sigpro_2023_109005
crossref_primary_10_1109_TGRS_2023_3272588
crossref_primary_10_1016_j_sigpro_2022_108778
crossref_primary_10_1109_TCSVT_2023_3313974
crossref_primary_10_1145_3652148
crossref_primary_10_1109_JSTARS_2024_3476990
crossref_primary_10_1109_TII_2022_3204681
crossref_primary_10_1109_TCE_2024_3485179
crossref_primary_10_1016_j_sigpro_2024_109741
crossref_primary_10_1016_j_knosys_2025_112996
crossref_primary_10_1109_TCSVT_2022_3231789
crossref_primary_10_3390_bdcc9010014
crossref_primary_10_56294_dm20251055
crossref_primary_10_1016_j_jvcir_2024_104294
crossref_primary_10_1145_3719011
crossref_primary_10_1109_JSEN_2025_3569520
crossref_primary_10_1109_TCSVT_2023_3237274
crossref_primary_10_1109_TCSVT_2024_3371178
crossref_primary_10_1109_TCSVT_2024_3455576
crossref_primary_10_1109_TCSVT_2024_3376704
crossref_primary_10_1109_TCSVT_2023_3300316
crossref_primary_10_1109_TCSVT_2024_3401872
crossref_primary_10_1016_j_jvcir_2025_104456
crossref_primary_10_1109_JETCAS_2024_3403524
crossref_primary_10_1109_JETCAS_2024_3385653
crossref_primary_10_1016_j_neunet_2024_106909
crossref_primary_10_1109_TBC_2024_3443470
crossref_primary_10_1016_j_image_2024_117227
crossref_primary_10_1117_1_JEI_32_4_043023
crossref_primary_10_1109_TCSVT_2024_3360248
crossref_primary_10_1109_TCSVT_2022_3216713
crossref_primary_10_1109_TCSVT_2025_3552971
crossref_primary_10_1109_TIP_2023_3287495
crossref_primary_10_1109_TCSVT_2024_3371686
crossref_primary_10_1109_TCSVT_2024_3395275
crossref_primary_10_1007_s00521_025_11138_0
crossref_primary_10_1109_TPAMI_2024_3356557
crossref_primary_10_1109_ACCESS_2023_3236086
crossref_primary_10_3390_s22041357
crossref_primary_10_3390_e26050357
crossref_primary_10_1109_TMM_2024_3416831
crossref_primary_10_1109_JETCAS_2025_3538652
crossref_primary_10_1007_s00530_025_01945_9
crossref_primary_10_1109_JSTARS_2025_3584931
crossref_primary_10_3390_rs17132189
crossref_primary_10_1109_TCSVT_2025_3556708
crossref_primary_10_1109_TII_2024_3431082
crossref_primary_10_1109_TCSVT_2022_3195322
crossref_primary_10_3390_rs17142419
crossref_primary_10_1016_j_engappai_2023_106361
crossref_primary_10_1109_TMM_2022_3220421
crossref_primary_10_1109_TCSVT_2022_3150014
crossref_primary_10_1007_s00371_024_03571_4
Cites_doi 10.1109/CVPR42600.2020.00796
10.1109/76.911157
10.1109/CVPR.2016.90
10.1109/TCSVT.2012.2221191
10.1109/CVPR.2017.577
10.1109/TCSVT.2003.815165
10.1109/CVPR42600.2020.01042
10.1109/ICCV.2019.00031
10.1109/TCSVT.2015.2478706
10.1109/TIP.2003.819861
10.1109/CVPR.2019.00440
10.1109/30.125072
10.1109/CVPR.2018.00813
10.1117/1.1469618
10.1109/CVPR.2018.00339
10.1109/TNNLS.2021.3104974
10.1109/ICME.2019.00249
10.1109/CVPR.2018.00461
10.1109/TCOM.1974.1092258
10.1109/CVPR.2009.5206848
10.1109/CVPR.2018.00462
10.1109/CVPRW50498.2020.00066
10.1109/79.952802
10.1109/CVPRW.2019.00261
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2021.3089491
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 2341
ExternalDocumentID 10_1109_TCSVT_2021_3089491
9455349
Genre orig-research
GrantInformation_xml – fundername: NSFC
  grantid: U1908209; 61632001
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2018AAA0101400
  funderid: 10.13039/501100012166
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-31a828a49e0d9c3ac9a5882221c4a225053aa8efad6a64e5abdc05f3b17c3b733
IEDL.DBID RIE
ISICitedReferencesCount 113
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778973700051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-8215
IngestDate Sun Jun 29 16:17:21 EDT 2025
Tue Nov 18 22:32:14 EST 2025
Sat Nov 29 01:44:16 EST 2025
Wed Aug 27 02:40:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-31a828a49e0d9c3ac9a5882221c4a225053aa8efad6a64e5abdc05f3b17c3b733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3770-3442
0000-0002-5360-7565
0000-0002-8525-5066
0000-0001-6608-0785
PQID 2647425560
PQPubID 85433
PageCount 13
ParticipantIDs proquest_journals_2647425560
crossref_citationtrail_10_1109_TCSVT_2021_3089491
crossref_primary_10_1109_TCSVT_2021_3089491
ieee_primary_9455349
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref36
ref31
Lee (ref29) 2019
Sullivan (ref22)
ref1
ref17
ref38
Ballé (ref9)
Lee (ref11)
Van Oord (ref12)
ref19
ref18
Ballé (ref40)
Chen (ref30) 2019
van den Oord (ref35) 2016
Helminger (ref45) 2020
ref23
Agustsson (ref25)
ref26
ref20
ref42
ref41
ref21
ref43
Salimans (ref34) 2017
Chen (ref39)
ref28
ref27
ref8
Minnen (ref10)
Zhang (ref16) 2020
ref7
ref4
ref3
Higgins (ref33)
ref6
Kingma (ref32) 2013
Kingma (ref44) 2014
Wiegand (ref37) 2003
Theis (ref24) 2017
Forchheimer (ref2)
Ballé (ref5) 2018
References_xml – year: 2017
  ident: ref34
  article-title: PixelCNN++: Improving the PixelCNN with discretized logistic mixture likelihood and other modifications
  publication-title: arXiv:1701.05517
– start-page: 15
  volume-title: Proc. Picture Coding Symp. (PCS)
  ident: ref2
  article-title: Differential transform coding: A new hybrid coding scheme
– ident: ref7
  doi: 10.1109/CVPR42600.2020.00796
– ident: ref26
  doi: 10.1109/76.911157
– volume-title: Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec. H. 264|ISO/IEC 14496-10 AVC)
  year: 2003
  ident: ref37
– ident: ref41
  doi: 10.1109/CVPR.2016.90
– ident: ref21
  doi: 10.1109/TCSVT.2012.2221191
– ident: ref4
  doi: 10.1109/CVPR.2017.577
– ident: ref3
  doi: 10.1109/TCSVT.2003.815165
– ident: ref15
  doi: 10.1109/CVPR42600.2020.01042
– ident: ref6
  doi: 10.1109/ICCV.2019.00031
– start-page: 1747
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref12
  article-title: Pixel recurrent neural networks
– ident: ref23
  doi: 10.1109/TCSVT.2015.2478706
– ident: ref17
  doi: 10.1109/TIP.2003.819861
– ident: ref36
  doi: 10.1109/CVPR.2019.00440
– volume-title: Proc. Picture Coding Symp. (PCS)
  ident: ref22
  article-title: Versatile video coding–towards the next generation of video compression
– ident: ref19
  doi: 10.1109/30.125072
– year: 2020
  ident: ref45
  article-title: Lossy image compression with normalizing flows
  publication-title: arXiv:2008.10486
– start-page: 10771
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref10
  article-title: Joint autoregressive and hierarchical priors for learned image compression
– volume-title: Proc. ICLR
  ident: ref33
  article-title: beta-VAE: Learning basic visual concepts with a constrained variational framework
– ident: ref38
  doi: 10.1109/CVPR.2018.00813
– year: 2016
  ident: ref35
  article-title: WaveNet: A generative model for raw audio
  publication-title: arXiv:1609.03499
– ident: ref20
  doi: 10.1117/1.1469618
– ident: ref13
  doi: 10.1109/CVPR.2018.00339
– year: 2019
  ident: ref30
  article-title: Neural image compression via non-local attention optimization and improved context modeling
  publication-title: arXiv:1910.06244
– ident: ref31
  doi: 10.1109/TNNLS.2021.3104974
– year: 2013
  ident: ref32
  article-title: Auto-encoding variational Bayes
  publication-title: arXiv:1312.6114
– ident: ref27
  doi: 10.1109/ICME.2019.00249
– ident: ref14
  doi: 10.1109/CVPR.2018.00461
– volume-title: Proc. 7th Int. Conf. Learn. Represent. (ICLR)
  ident: ref11
  article-title: Context-adaptive entropy model for end-to-end optimized image compression
– ident: ref1
  doi: 10.1109/TCOM.1974.1092258
– year: 2017
  ident: ref24
  article-title: Lossy image compression with compressive autoencoders
  publication-title: arXiv:1703.00395
– ident: ref43
  doi: 10.1109/CVPR.2009.5206848
– ident: ref28
  doi: 10.1109/CVPR.2018.00462
– year: 2019
  ident: ref29
  article-title: An end-to-end joint learning scheme of image compression and quality enhancement with improved entropy minimization
  publication-title: arXiv:1912.12817
– start-page: 864
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref39
  article-title: PixelSNAIL: An improved autoregressive generative model
– year: 2018
  ident: ref5
  article-title: Variational image compression with a scale hyperprior
  publication-title: arXiv:1802.01436
– volume-title: Proc. 5th Int. Conf. Learn. Representation (ICLR)
  ident: ref9
  article-title: End-to-end optimized image compression
– ident: ref18
  doi: 10.1109/CVPRW50498.2020.00066
– start-page: 1141
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref25
  article-title: Soft-to-hard vector quantization for end-to-end learning compressible representations
– year: 2020
  ident: ref16
  article-title: ResNeSt: Split-attention networks
  publication-title: arXiv:2004.08955
– volume-title: Proc. 4th Int. Conf. Learn. Represent. (ICLR)
  ident: ref40
  article-title: Density modeling of images using a generalized normalization transformation
– ident: ref8
  doi: 10.1109/79.952802
– year: 2014
  ident: ref44
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref42
  doi: 10.1109/CVPRW.2019.00261
SSID ssj0014847
Score 2.6412916
Snippet Over the past several years, we have witnessed impressive progress in the field of learned image compression. Recent learned image codecs are commonly based on...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2329
SubjectTerms causal context model
causal global prediction
Codec
Context
Context modeling
Correlation
Decoding
Distortion
Entropy
Entropy coding
Image coding
Image compression
improved entropy model
Learned image compression
Optimization
Prediction models
Predictive models
Spatial dependencies
Transforms
Title Causal Contextual Prediction for Learned Image Compression
URI https://ieeexplore.ieee.org/document/9455349
https://www.proquest.com/docview/2647425560
Volume 32
WOSCitedRecordID wos000778973700051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014847
  issn: 1051-8215
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7a4kEPvqpYrZKDN02bzW4e602KRS-lYJXewmYzAUHT0of4853dpEFRBG8h7ECYSWa-ycx8A3CZSgqLuYhcIVPuCkIcbmqm0TKlQ-6zUKeRtssmotEonk7luAHX9SwMItrmM-yZS1vLz2Z6bX6V9aUIAi5kE5pRFJazWnXFQMR2mRjBBebGFMc2AzKe7E8Gj88TSgV91uNeLIVk34KQ3arywxXb-DLc-9-T7cNuhSOd29LwB9DA4hB2vrALtuFmoNZLOmMJqD7MnIgzXpi6jLGFQ2DVseSqmDkPb-RVHOMayq7Y4giehneTwb1brUpwtS-DFXlSRamTEhK9TGqutFRBbGI_00L5BuZwpWLMVRaqUGCg0kx7Qc5TFmmeRpwfQ6uYFXgCDorcZ-hpn-4LT5CUIWxhGBO0yZDrDrCN7hJd8YibdRavic0nPJlYfSdG30ml7w5c1TLzkkXjz9Nto-H6ZKXcDnQ3JkqqD22ZEJ6j5D4g3Hb6u9QZbPtmYsE223ShtVqs8Ry29PvqZbm4sO_QJ5rgwoE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFdSDryrWZw7eNG02u3msNymWFmspGKW3ZbPZgKCt9CH-fGe3aVAUwVsIOxBmkplvMjPfAFykHMNiziKX8ZS6DBGHm5pptEyqkPokVGmk7LKJqN-Ph0M-qMBVOQujtbbNZ7phLm0tPxuruflV1uQsCCjjK7BqNmcV01plzYDFdp0YAgbixhjJliMyHm8mrYenBJNBnzSoF3PGybcwZPeq_HDGNsK0t__3bDuwVSBJ52Zh-l2o6NEebH7hF6zBdUvOp3jGUlB9mEkRZzAxlRljDQfhqmPpVXXmdF_RrzjGOSz6Ykf78Ni-TVodt1iW4CqfBzP0pRKTJ8m49jKuqFRcBrGJ_kQx6RugQ6WMdS6zUIZMBzLNlBfkNCWRomlE6QFUR-ORPgRHs9wn2lM-3mceQylD2UJ0jOAm01TVgSx1J1TBJG4WWrwIm1F4XFh9C6NvUei7DpelzNuCR-PP0zWj4fJkodw6nCxNJIpPbSoQ0WF6HyByO_pd6hzWO8l9T_S6_btj2PDN_IJtvTmB6mwy16ewpt5nz9PJmX2fPgHqicXK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Causal+Contextual+Prediction+for+Learned+Image+Compression&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Guo%2C+Zongyu&rft.au=Zhang%2C+Zhizheng&rft.au=Feng%2C+Runsen&rft.au=Chen%2C+Zhibo&rft.date=2022-04-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=32&rft.issue=4&rft.spage=2329&rft.epage=2341&rft_id=info:doi/10.1109%2FTCSVT.2021.3089491&rft.externalDocID=9455349
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon