Vibration Parameters for Impact Detection of Composite Panel: A Neural Network Based Approach
The need for reliable methodologies for structural monitoring is certainly a current line of research in many engineering sectors. The detection of the impact on composite materials is in fact a recent subject of study, aimed at safeguarding the mechanical integrity and improving the useful life of...
Gespeichert in:
| Veröffentlicht in: | Journal of composites science Jg. 5; H. 7; S. 185 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.07.2021
|
| Schlagworte: | |
| ISSN: | 2504-477X, 2504-477X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The need for reliable methodologies for structural monitoring is certainly a current line of research in many engineering sectors. The detection of the impact on composite materials is in fact a recent subject of study, aimed at safeguarding the mechanical integrity and improving the useful life of structural components. In such a context, the work deals with evaluation of the use of neural algorithms for localizing the position of the impacts on composite structures. Starting from FE (finite element) simulations, representative of the dynamic response of a CFRP (Carbon Fiber Reinforced Polymer) panel as a benchmark, the approach has been finally validated experimentally by modal parameters identification. |
|---|---|
| AbstractList | The need for reliable methodologies for structural monitoring is certainly a current line of research in many engineering sectors. The detection of the impact on composite materials is in fact a recent subject of study, aimed at safeguarding the mechanical integrity and improving the useful life of structural components. In such a context, the work deals with evaluation of the use of neural algorithms for localizing the position of the impacts on composite structures. Starting from FE (finite element) simulations, representative of the dynamic response of a CFRP (Carbon Fiber Reinforced Polymer) panel as a benchmark, the approach has been finally validated experimentally by modal parameters identification. |
| Author | Arena, Maurizio Viscardi, Massimo |
| Author_xml | – sequence: 1 givenname: Maurizio orcidid: 0000-0003-3695-6568 surname: Arena fullname: Arena, Maurizio – sequence: 2 givenname: Massimo surname: Viscardi fullname: Viscardi, Massimo |
| BookMark | eNptkE9LxDAQxYOs4LruxU8Q8CZUJ2nTNt7W9d-CqAcVL1KmaYJd26YmWcRvb90VFPH0hnm_mQdvl4w622lC9hkcxbGE46XyAjJgudgiYy4giZIsexr9mnfI1PslAPBMJiDjMXl-rEuHobYdvUOHrQ7aeWqso4u2RxXo2bBRa98aOrdtb30d9AB3ujmhM3qjVw6bQcK7da_0FL2u6KzvnUX1ske2DTZeT791Qh4uzu_nV9H17eViPruOFJciRNyIlHGexKaMc5ZXuqoqlTOWZBJ5mqaIaFJUBgTwUiWmzEGiBMa1ZipFHU_IwebvEPu20j4US7ty3RBZcCESkQkZpwN1uKGUs947bYre1S26j4JB8dVg8dPgAMMfWNVhXVRwWDf_nXwC4zd1iQ |
| CitedBy_id | crossref_primary_10_1016_j_ultras_2023_107014 crossref_primary_10_1088_1361_665X_ae021a |
| Cites_doi | 10.1109/TMECH.2017.2728371 10.1088/0964-1726/1/2/002 10.1016/j.jsv.2016.05.027 10.1177/1045389X9000100202 10.2514/3.9792 10.1142/S1756973716400059 10.2514/3.11964 10.1109/JIOT.2018.2867722 10.1177/089270579400700404 10.3390/s18051429 10.1117/12.2296571 10.1016/j.promfg.2016.08.083 10.1177/1475921709349673 10.1016/j.ymssp.2019.03.050 10.1088/0964-1726/14/1/027 10.3390/s19224933 10.1117/12.605757 10.1109/ACCESS.2017.2728010 10.1016/j.jsv.2016.10.043 10.1106/H0EV-7PWM-QYHW-E7VF 10.20944/preprints201808.0130.v1 10.4028/www.scientific.net/AMR.123-125.895 10.1016/j.jsv.2006.07.019 10.1016/j.neucom.2017.09.069 10.1111/j.1475-1305.2000.tb01175.x 10.1016/0045-7949(92)90132-J 10.4028/www.scientific.net/KEM.488-489.767 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/jcs5070185 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2504-477X |
| ExternalDocumentID | 10_3390_jcs5070185 |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GroupedDBID | 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION D1I HCIFZ KB. MODMG M~E OK1 P62 PDBOC PHGZM PHGZT PIMPY PQGLB PROAC ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c295t-2f5612243fb3818dedddc811479a2666aaaf6acf0502bc4fb809a9012ee1c6ae3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000677633200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2504-477X |
| IngestDate | Fri Jul 25 11:58:27 EDT 2025 Tue Nov 18 21:37:34 EST 2025 Sat Nov 29 07:09:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-2f5612243fb3818dedddc811479a2666aaaf6acf0502bc4fb809a9012ee1c6ae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3695-6568 |
| OpenAccessLink | https://www.proquest.com/docview/2554575936?pq-origsite=%requestingapplication% |
| PQID | 2554575936 |
| PQPubID | 2059560 |
| ParticipantIDs | proquest_journals_2554575936 crossref_primary_10_3390_jcs5070185 crossref_citationtrail_10_3390_jcs5070185 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Journal of composites science |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Haywood (ref_13) 2004; 14 LeClerc (ref_16) 2007; 299 Ghajari (ref_15) 2011; 488 Wu (ref_9) 1992; 42 Qi (ref_26) 2017; 5 ref_32 ref_31 ref_30 Abdeljaber (ref_20) 2018; 275 Yue (ref_11) 2016; 7 Crawley (ref_1) 1987; 25 Wada (ref_2) 1990; 1 Kudva (ref_7) 1992; 1 Xia (ref_22) 2018; 23 Janssens (ref_23) 2016; 377 Markmiller (ref_14) 2010; 9 Park (ref_18) 2010; 123 Jeong (ref_24) 2016; 5 Worden (ref_12) 2000; 36 Hahn (ref_5) 1994; 7 Fu (ref_28) 2019; 128 ref_25 ref_21 Tsou (ref_10) 1994; 32 Abdeljaber (ref_19) 2017; 388 ref_3 ref_29 Fu (ref_27) 2018; 6 ref_8 ref_4 ref_6 Lopes (ref_17) 2000; 11 |
| References_xml | – volume: 23 start-page: 101 year: 2018 ident: ref_22 article-title: Fault Diagnosis for Rotating Machinery Using Multiple Sensors and Convolutional Neural Networks publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2017.2728371 – volume: 1 start-page: 108 year: 1992 ident: ref_7 article-title: Damage detection in smart structures using neural networks and finite-element analyses publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/1/2/002 – volume: 377 start-page: 331 year: 2016 ident: ref_23 article-title: Con-volutional neural network based fault detection for rotating machinery publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.05.027 – volume: 1 start-page: 157 year: 1990 ident: ref_2 article-title: Adaptive Structures publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X9000100202 – ident: ref_30 – ident: ref_32 – ident: ref_3 – volume: 25 start-page: 327 year: 1987 ident: ref_1 article-title: Piezoelectric actuators as elements of intelligent structures publication-title: AIAA J. doi: 10.2514/3.9792 – volume: 7 start-page: 1640005 year: 2016 ident: ref_11 article-title: Assessment of Impact Detection Techniques for Aeronautical Application: ANN vs. LSSVM publication-title: J. Multiscale Model. doi: 10.1142/S1756973716400059 – volume: 32 start-page: 176 year: 1994 ident: ref_10 article-title: Structural damage detection and identification using neural networks publication-title: AIAA J. doi: 10.2514/3.11964 – volume: 6 start-page: 1183 year: 2018 ident: ref_27 article-title: An event-triggered energy-efficient wireless structural health monitoring system for impact detection in composite airframes publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2867722 – volume: 7 start-page: 344 year: 1994 ident: ref_5 article-title: An Artificial Neural Network for Low-Energy Impact Monitoring publication-title: J. Thermoplast. Compos. Mater. doi: 10.1177/089270579400700404 – ident: ref_25 doi: 10.3390/s18051429 – ident: ref_6 doi: 10.1117/12.2296571 – volume: 5 start-page: 1107 year: 2016 ident: ref_24 article-title: Rotating Machinery Diagnostics Using Deep Learning on Orbit Plot Images publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2016.08.083 – volume: 9 start-page: 25 year: 2010 ident: ref_14 article-title: Sensor Network Optimization for a Passive Sensing Impact Detection Technique publication-title: Struct. Health Monit. doi: 10.1177/1475921709349673 – volume: 128 start-page: 352 year: 2019 ident: ref_28 article-title: An energy-efficient cyber-physical system for wireless on-board aircraft structural health monitoring publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.03.050 – volume: 14 start-page: 265 year: 2004 ident: ref_13 article-title: An automatic impact monitor for a composite panel employing smart sensor technology publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/14/1/027 – ident: ref_8 – ident: ref_31 – ident: ref_29 doi: 10.3390/s19224933 – ident: ref_4 doi: 10.1117/12.605757 – volume: 5 start-page: 15066 year: 2017 ident: ref_26 article-title: Stacked Sparse Autoencoder-Based Deep Network for Fault Diagnosis of Rotating Machinery publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2728010 – volume: 388 start-page: 154 year: 2017 ident: ref_19 article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.10.043 – volume: 11 start-page: 206 year: 2000 ident: ref_17 article-title: Impedance-based structural health monitoring with artificial neural networks publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1106/H0EV-7PWM-QYHW-E7VF – ident: ref_21 doi: 10.20944/preprints201808.0130.v1 – volume: 123 start-page: 895 year: 2010 ident: ref_18 article-title: Detection of Impact Location for Composite Stiffened Panel Using FBG Sensors publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.123-125.895 – volume: 299 start-page: 672 year: 2007 ident: ref_16 article-title: Impact detection in an aircraft composite panel—A neural-network approach publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2006.07.019 – volume: 275 start-page: 1308 year: 2018 ident: ref_20 article-title: 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.09.069 – volume: 36 start-page: 61 year: 2000 ident: ref_12 article-title: Impact Location and Quantification on a Composite Panel using Neural Networks and a Genetic Algorithm publication-title: Strain doi: 10.1111/j.1475-1305.2000.tb01175.x – volume: 42 start-page: 649 year: 1992 ident: ref_9 article-title: Use of neural networks in detection of structural damage publication-title: Comput. Struct. doi: 10.1016/0045-7949(92)90132-J – volume: 488 start-page: 767 year: 2011 ident: ref_15 article-title: Impact Detection Using Artificial Neural Networks publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.488-489.767 |
| SSID | ssj0002794093 |
| Score | 2.1981027 |
| Snippet | The need for reliable methodologies for structural monitoring is certainly a current line of research in many engineering sectors. The detection of the impact... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 185 |
| SubjectTerms | Algorithms Carbon fiber reinforced plastics Composite materials Composite structures Dynamic response Fiber reinforced polymers Localization Neural networks Parameter identification Vibration |
| Title | Vibration Parameters for Impact Detection of Composite Panel: A Neural Network Based Approach |
| URI | https://www.proquest.com/docview/2554575936 |
| Volume | 5 |
| WOSCitedRecordID | wos000677633200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2504-477X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794093 issn: 2504-477X databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2504-477X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794093 issn: 2504-477X databaseCode: P5Z dateStart: 20170901 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2504-477X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794093 issn: 2504-477X databaseCode: KB. dateStart: 20170901 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2504-477X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794093 issn: 2504-477X databaseCode: BENPR dateStart: 20170901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2504-477X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794093 issn: 2504-477X databaseCode: PIMPY dateStart: 20170901 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF1s9eDFD1Ss1rKgFw-x6SZNN16k1RaLGoJoqYKE7X6AUtLaRH-_M0naKogXr8kSktnNzLzNy3uEnLjcMT6T8KZxz7NcLpTlMwArSmplc8O1yrwBB7etIODDoR8WG25JQauc58QsUauJxD3yOrS-LppJOt7F9N1C1yj8ulpYaJTIKqokoHVD2Hxe7LEwWGyA2HNVUgfQff1NJtAA2Q20Tv5eh36m4ay29Db_e1dbZKPoKmk7XwbbZEXHO-RlgFAYA09DgRwsFNKk0KTSfvZrJL3SaUbEiunEUEwMSODSMDjW43PapijcAVcNcqY47UDBU7RdiJDvksde9-Hy2ircFCzJ_GZqMYNGmMx1zAirtNJKKckBDrV8AVXaE0IYT0hjN202kq4ZcdsX0C0wrRvSE9rZI-V4Eut9Qrljaw_xrILHbwiPKyMkoPIW07YyilfI6Ty2kSykxtHxYhwB5MB5iJbzUCHHi7HTXGDj11HVefyj4iVLomXwD_4-fUjWGVJRMpZtlZTT2Yc-ImvyM31NZjWy2ukG4X2NlG46Z7VsBcGxsH8XPn0BQ6zROA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LSyNBEC40CnrRFRWjrjaoBw-Dne5x0iMsS9QVgzHkoKIHGTv9AEUmMYnK_qn9jVs1Dx8g3jx4nqJhur6pR8_X9QFshkr6WBj80lQUBaHSNogFNivWOMuVV85m2oAXrXq7rS4v484Y_CvvwhCtsoyJWaC2PUNn5DtY-oYkJimj3_2HgFSj6O9qKaGRw-LE_X3Glm34q3mI_t0S4ujP2cFxUKgKBEbEu6NAeBKEFKH0XcpW1llrjcK2oB5rzFaR1tpH2ni-y0XXhL6reKwxawrnaibSTuK64zAREtgrMNFpnnauXk51BMKbxzKfgyplzHfuzBBLLl4jsea3me994M-y2dHsd9uHHzBT1M2skQN9DsZcOg_XF9TsE7RYRxPLjEaFMizDWTO7_MkO3SijmqWs5xmFPqKoOTRO3f0eazAaTYKrtnMuPNvHlG5ZoxizvgDnX_JGi1BJe6lbAqYkdxF17Ba3u6YjZb02rivrwnHrrarCdunLxBTD1EnT4z7Bpor8nrz6vQobL7b9fITIh1arpb-TIowMk1dnL3_-eB2mjs9OW0mr2T5ZgWlBxJuMU7wKldHg0f2ESfM0uh0O1grEMrj5anD8B_kzLKM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1baxNBFD7EVKQvtaJi2tQO2D74sGQys9nMClKiaTAkhDxoCIKsk7mAJWzSJCr-NX-d5-wlaUF8y4PPexjYOd-ey-w35wO4CJX0sTD4pakoCkKlbRALbFascZYrr5zNtAEnw_ZopKbTeFyB3-VdGKJVljExC9R2YeiMvIGlb0hikjJq-IIWMe72rpa3ASlI0Z_WUk4jh8jA_fqJ7dv6bb-Lvr4Uonf98f2HoFAYCIyIW5tAeBKHFKH0M8pc1llrjcIWoR1rzFyR1tpH2nje4mJmQj9TPNaYQYVzTRNpJ3HdB3DQxh6T6ITj1uft-Y5AoPNY5hNRpYx548assfjiTZJtvpsD76eALK_1Hv_PO3IMR0U1zTo5_J9AxaVP4cuEjgAIcGysiXtGA0QZFuesn10JZV23yQhoKVt4RgGRiGsOjVM3f8M6jAaW4KqjnCHP3mGit6xTDF9_Bp_28kbPoZouUvcCmJLcRdTHW9z6po6U9dq4mWwLx623qgavS78mphixTkof8wRbLcJAssNADV5tbZf5YJG_WtVL3ydFcFknO8ef_PvxOTxCRCTD_mhwCoeC2DgZ0bgO1c3quzuDh-bH5tt69TKDLoOv-0bGH7CiNAY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vibration+Parameters+for+Impact+Detection+of+Composite+Panel%3A+A+Neural+Network+Based+Approach&rft.jtitle=Journal+of+composites+science&rft.au=Arena%2C+Maurizio&rft.au=Viscardi%2C+Massimo&rft.date=2021-07-01&rft.issn=2504-477X&rft.eissn=2504-477X&rft.volume=5&rft.issue=7&rft.spage=185&rft_id=info:doi/10.3390%2Fjcs5070185&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_jcs5070185 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-477X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-477X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-477X&client=summon |