Vibration Parameters for Impact Detection of Composite Panel: A Neural Network Based Approach

The need for reliable methodologies for structural monitoring is certainly a current line of research in many engineering sectors. The detection of the impact on composite materials is in fact a recent subject of study, aimed at safeguarding the mechanical integrity and improving the useful life of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of composites science Jg. 5; H. 7; S. 185
Hauptverfasser: Arena, Maurizio, Viscardi, Massimo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.07.2021
Schlagworte:
ISSN:2504-477X, 2504-477X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The need for reliable methodologies for structural monitoring is certainly a current line of research in many engineering sectors. The detection of the impact on composite materials is in fact a recent subject of study, aimed at safeguarding the mechanical integrity and improving the useful life of structural components. In such a context, the work deals with evaluation of the use of neural algorithms for localizing the position of the impacts on composite structures. Starting from FE (finite element) simulations, representative of the dynamic response of a CFRP (Carbon Fiber Reinforced Polymer) panel as a benchmark, the approach has been finally validated experimentally by modal parameters identification.
AbstractList The need for reliable methodologies for structural monitoring is certainly a current line of research in many engineering sectors. The detection of the impact on composite materials is in fact a recent subject of study, aimed at safeguarding the mechanical integrity and improving the useful life of structural components. In such a context, the work deals with evaluation of the use of neural algorithms for localizing the position of the impacts on composite structures. Starting from FE (finite element) simulations, representative of the dynamic response of a CFRP (Carbon Fiber Reinforced Polymer) panel as a benchmark, the approach has been finally validated experimentally by modal parameters identification.
Author Arena, Maurizio
Viscardi, Massimo
Author_xml – sequence: 1
  givenname: Maurizio
  orcidid: 0000-0003-3695-6568
  surname: Arena
  fullname: Arena, Maurizio
– sequence: 2
  givenname: Massimo
  surname: Viscardi
  fullname: Viscardi, Massimo
BookMark eNptkE9LxDAQxYOs4LruxU8Q8CZUJ2nTNt7W9d-CqAcVL1KmaYJd26YmWcRvb90VFPH0hnm_mQdvl4w622lC9hkcxbGE46XyAjJgudgiYy4giZIsexr9mnfI1PslAPBMJiDjMXl-rEuHobYdvUOHrQ7aeWqso4u2RxXo2bBRa98aOrdtb30d9AB3ujmhM3qjVw6bQcK7da_0FL2u6KzvnUX1ske2DTZeT791Qh4uzu_nV9H17eViPruOFJciRNyIlHGexKaMc5ZXuqoqlTOWZBJ5mqaIaFJUBgTwUiWmzEGiBMa1ZipFHU_IwebvEPu20j4US7ty3RBZcCESkQkZpwN1uKGUs947bYre1S26j4JB8dVg8dPgAMMfWNVhXVRwWDf_nXwC4zd1iQ
CitedBy_id crossref_primary_10_1016_j_ultras_2023_107014
crossref_primary_10_1088_1361_665X_ae021a
Cites_doi 10.1109/TMECH.2017.2728371
10.1088/0964-1726/1/2/002
10.1016/j.jsv.2016.05.027
10.1177/1045389X9000100202
10.2514/3.9792
10.1142/S1756973716400059
10.2514/3.11964
10.1109/JIOT.2018.2867722
10.1177/089270579400700404
10.3390/s18051429
10.1117/12.2296571
10.1016/j.promfg.2016.08.083
10.1177/1475921709349673
10.1016/j.ymssp.2019.03.050
10.1088/0964-1726/14/1/027
10.3390/s19224933
10.1117/12.605757
10.1109/ACCESS.2017.2728010
10.1016/j.jsv.2016.10.043
10.1106/H0EV-7PWM-QYHW-E7VF
10.20944/preprints201808.0130.v1
10.4028/www.scientific.net/AMR.123-125.895
10.1016/j.jsv.2006.07.019
10.1016/j.neucom.2017.09.069
10.1111/j.1475-1305.2000.tb01175.x
10.1016/0045-7949(92)90132-J
10.4028/www.scientific.net/KEM.488-489.767
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/jcs5070185
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2504-477X
ExternalDocumentID 10_3390_jcs5070185
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID 8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
D1I
HCIFZ
KB.
MODMG
M~E
OK1
P62
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c295t-2f5612243fb3818dedddc811479a2666aaaf6acf0502bc4fb809a9012ee1c6ae3
IEDL.DBID P5Z
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000677633200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2504-477X
IngestDate Fri Jul 25 11:58:27 EDT 2025
Tue Nov 18 21:37:34 EST 2025
Sat Nov 29 07:09:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-2f5612243fb3818dedddc811479a2666aaaf6acf0502bc4fb809a9012ee1c6ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3695-6568
OpenAccessLink https://www.proquest.com/docview/2554575936?pq-origsite=%requestingapplication%
PQID 2554575936
PQPubID 2059560
ParticipantIDs proquest_journals_2554575936
crossref_primary_10_3390_jcs5070185
crossref_citationtrail_10_3390_jcs5070185
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Journal of composites science
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Haywood (ref_13) 2004; 14
LeClerc (ref_16) 2007; 299
Ghajari (ref_15) 2011; 488
Wu (ref_9) 1992; 42
Qi (ref_26) 2017; 5
ref_32
ref_31
ref_30
Abdeljaber (ref_20) 2018; 275
Yue (ref_11) 2016; 7
Crawley (ref_1) 1987; 25
Wada (ref_2) 1990; 1
Kudva (ref_7) 1992; 1
Xia (ref_22) 2018; 23
Janssens (ref_23) 2016; 377
Markmiller (ref_14) 2010; 9
Park (ref_18) 2010; 123
Jeong (ref_24) 2016; 5
Worden (ref_12) 2000; 36
Hahn (ref_5) 1994; 7
Fu (ref_28) 2019; 128
ref_25
ref_21
Tsou (ref_10) 1994; 32
Abdeljaber (ref_19) 2017; 388
ref_3
ref_29
Fu (ref_27) 2018; 6
ref_8
ref_4
ref_6
Lopes (ref_17) 2000; 11
References_xml – volume: 23
  start-page: 101
  year: 2018
  ident: ref_22
  article-title: Fault Diagnosis for Rotating Machinery Using Multiple Sensors and Convolutional Neural Networks
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2017.2728371
– volume: 1
  start-page: 108
  year: 1992
  ident: ref_7
  article-title: Damage detection in smart structures using neural networks and finite-element analyses
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/1/2/002
– volume: 377
  start-page: 331
  year: 2016
  ident: ref_23
  article-title: Con-volutional neural network based fault detection for rotating machinery
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.05.027
– volume: 1
  start-page: 157
  year: 1990
  ident: ref_2
  article-title: Adaptive Structures
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X9000100202
– ident: ref_30
– ident: ref_32
– ident: ref_3
– volume: 25
  start-page: 327
  year: 1987
  ident: ref_1
  article-title: Piezoelectric actuators as elements of intelligent structures
  publication-title: AIAA J.
  doi: 10.2514/3.9792
– volume: 7
  start-page: 1640005
  year: 2016
  ident: ref_11
  article-title: Assessment of Impact Detection Techniques for Aeronautical Application: ANN vs. LSSVM
  publication-title: J. Multiscale Model.
  doi: 10.1142/S1756973716400059
– volume: 32
  start-page: 176
  year: 1994
  ident: ref_10
  article-title: Structural damage detection and identification using neural networks
  publication-title: AIAA J.
  doi: 10.2514/3.11964
– volume: 6
  start-page: 1183
  year: 2018
  ident: ref_27
  article-title: An event-triggered energy-efficient wireless structural health monitoring system for impact detection in composite airframes
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2867722
– volume: 7
  start-page: 344
  year: 1994
  ident: ref_5
  article-title: An Artificial Neural Network for Low-Energy Impact Monitoring
  publication-title: J. Thermoplast. Compos. Mater.
  doi: 10.1177/089270579400700404
– ident: ref_25
  doi: 10.3390/s18051429
– ident: ref_6
  doi: 10.1117/12.2296571
– volume: 5
  start-page: 1107
  year: 2016
  ident: ref_24
  article-title: Rotating Machinery Diagnostics Using Deep Learning on Orbit Plot Images
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2016.08.083
– volume: 9
  start-page: 25
  year: 2010
  ident: ref_14
  article-title: Sensor Network Optimization for a Passive Sensing Impact Detection Technique
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921709349673
– volume: 128
  start-page: 352
  year: 2019
  ident: ref_28
  article-title: An energy-efficient cyber-physical system for wireless on-board aircraft structural health monitoring
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.03.050
– volume: 14
  start-page: 265
  year: 2004
  ident: ref_13
  article-title: An automatic impact monitor for a composite panel employing smart sensor technology
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/14/1/027
– ident: ref_8
– ident: ref_31
– ident: ref_29
  doi: 10.3390/s19224933
– ident: ref_4
  doi: 10.1117/12.605757
– volume: 5
  start-page: 15066
  year: 2017
  ident: ref_26
  article-title: Stacked Sparse Autoencoder-Based Deep Network for Fault Diagnosis of Rotating Machinery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2728010
– volume: 388
  start-page: 154
  year: 2017
  ident: ref_19
  article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.10.043
– volume: 11
  start-page: 206
  year: 2000
  ident: ref_17
  article-title: Impedance-based structural health monitoring with artificial neural networks
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1106/H0EV-7PWM-QYHW-E7VF
– ident: ref_21
  doi: 10.20944/preprints201808.0130.v1
– volume: 123
  start-page: 895
  year: 2010
  ident: ref_18
  article-title: Detection of Impact Location for Composite Stiffened Panel Using FBG Sensors
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.123-125.895
– volume: 299
  start-page: 672
  year: 2007
  ident: ref_16
  article-title: Impact detection in an aircraft composite panel—A neural-network approach
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2006.07.019
– volume: 275
  start-page: 1308
  year: 2018
  ident: ref_20
  article-title: 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.069
– volume: 36
  start-page: 61
  year: 2000
  ident: ref_12
  article-title: Impact Location and Quantification on a Composite Panel using Neural Networks and a Genetic Algorithm
  publication-title: Strain
  doi: 10.1111/j.1475-1305.2000.tb01175.x
– volume: 42
  start-page: 649
  year: 1992
  ident: ref_9
  article-title: Use of neural networks in detection of structural damage
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(92)90132-J
– volume: 488
  start-page: 767
  year: 2011
  ident: ref_15
  article-title: Impact Detection Using Artificial Neural Networks
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.488-489.767
SSID ssj0002794093
Score 2.1981027
Snippet The need for reliable methodologies for structural monitoring is certainly a current line of research in many engineering sectors. The detection of the impact...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 185
SubjectTerms Algorithms
Carbon fiber reinforced plastics
Composite materials
Composite structures
Dynamic response
Fiber reinforced polymers
Localization
Neural networks
Parameter identification
Vibration
Title Vibration Parameters for Impact Detection of Composite Panel: A Neural Network Based Approach
URI https://www.proquest.com/docview/2554575936
Volume 5
WOSCitedRecordID wos000677633200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2504-477X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794093
  issn: 2504-477X
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2504-477X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794093
  issn: 2504-477X
  databaseCode: P5Z
  dateStart: 20170901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2504-477X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794093
  issn: 2504-477X
  databaseCode: KB.
  dateStart: 20170901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2504-477X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794093
  issn: 2504-477X
  databaseCode: BENPR
  dateStart: 20170901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2504-477X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794093
  issn: 2504-477X
  databaseCode: PIMPY
  dateStart: 20170901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF1s9eDFD1Ss1rKgFw-x6SZNN16k1RaLGoJoqYKE7X6AUtLaRH-_M0naKogXr8kSktnNzLzNy3uEnLjcMT6T8KZxz7NcLpTlMwArSmplc8O1yrwBB7etIODDoR8WG25JQauc58QsUauJxD3yOrS-LppJOt7F9N1C1yj8ulpYaJTIKqokoHVD2Hxe7LEwWGyA2HNVUgfQff1NJtAA2Q20Tv5eh36m4ay29Db_e1dbZKPoKmk7XwbbZEXHO-RlgFAYA09DgRwsFNKk0KTSfvZrJL3SaUbEiunEUEwMSODSMDjW43PapijcAVcNcqY47UDBU7RdiJDvksde9-Hy2ircFCzJ_GZqMYNGmMx1zAirtNJKKckBDrV8AVXaE0IYT0hjN202kq4ZcdsX0C0wrRvSE9rZI-V4Eut9Qrljaw_xrILHbwiPKyMkoPIW07YyilfI6Ty2kSykxtHxYhwB5MB5iJbzUCHHi7HTXGDj11HVefyj4iVLomXwD_4-fUjWGVJRMpZtlZTT2Yc-ImvyM31NZjWy2ukG4X2NlG46Z7VsBcGxsH8XPn0BQ6zROA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LSyNBEC40CnrRFRWjrjaoBw-Dne5x0iMsS9QVgzHkoKIHGTv9AEUmMYnK_qn9jVs1Dx8g3jx4nqJhur6pR8_X9QFshkr6WBj80lQUBaHSNogFNivWOMuVV85m2oAXrXq7rS4v484Y_CvvwhCtsoyJWaC2PUNn5DtY-oYkJimj3_2HgFSj6O9qKaGRw-LE_X3Glm34q3mI_t0S4ujP2cFxUKgKBEbEu6NAeBKEFKH0XcpW1llrjcK2oB5rzFaR1tpH2ni-y0XXhL6reKwxawrnaibSTuK64zAREtgrMNFpnnauXk51BMKbxzKfgyplzHfuzBBLLl4jsea3me994M-y2dHsd9uHHzBT1M2skQN9DsZcOg_XF9TsE7RYRxPLjEaFMizDWTO7_MkO3SijmqWs5xmFPqKoOTRO3f0eazAaTYKrtnMuPNvHlG5ZoxizvgDnX_JGi1BJe6lbAqYkdxF17Ba3u6YjZb02rivrwnHrrarCdunLxBTD1EnT4z7Bpor8nrz6vQobL7b9fITIh1arpb-TIowMk1dnL3_-eB2mjs9OW0mr2T5ZgWlBxJuMU7wKldHg0f2ESfM0uh0O1grEMrj5anD8B_kzLKM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1baxNBFD7EVKQvtaJi2tQO2D74sGQys9nMClKiaTAkhDxoCIKsk7mAJWzSJCr-NX-d5-wlaUF8y4PPexjYOd-ey-w35wO4CJX0sTD4pakoCkKlbRALbFascZYrr5zNtAEnw_ZopKbTeFyB3-VdGKJVljExC9R2YeiMvIGlb0hikjJq-IIWMe72rpa3ASlI0Z_WUk4jh8jA_fqJ7dv6bb-Lvr4Uonf98f2HoFAYCIyIW5tAeBKHFKH0M8pc1llrjcIWoR1rzFyR1tpH2nje4mJmQj9TPNaYQYVzTRNpJ3HdB3DQxh6T6ITj1uft-Y5AoPNY5hNRpYx548assfjiTZJtvpsD76eALK_1Hv_PO3IMR0U1zTo5_J9AxaVP4cuEjgAIcGysiXtGA0QZFuesn10JZV23yQhoKVt4RgGRiGsOjVM3f8M6jAaW4KqjnCHP3mGit6xTDF9_Bp_28kbPoZouUvcCmJLcRdTHW9z6po6U9dq4mWwLx623qgavS78mphixTkof8wRbLcJAssNADV5tbZf5YJG_WtVL3ydFcFknO8ef_PvxOTxCRCTD_mhwCoeC2DgZ0bgO1c3quzuDh-bH5tt69TKDLoOv-0bGH7CiNAY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vibration+Parameters+for+Impact+Detection+of+Composite+Panel%3A+A+Neural+Network+Based+Approach&rft.jtitle=Journal+of+composites+science&rft.au=Arena%2C+Maurizio&rft.au=Viscardi%2C+Massimo&rft.date=2021-07-01&rft.issn=2504-477X&rft.eissn=2504-477X&rft.volume=5&rft.issue=7&rft.spage=185&rft_id=info:doi/10.3390%2Fjcs5070185&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_jcs5070185
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-477X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-477X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-477X&client=summon