Distributed Recursive Gaussian Processes for RSS Map Applied to Target Tracking

We propose a distributed recursive Gaussian process (drGP) regression framework for building received-signal-strength (RSS) map. The proposed framework adopts independent mobile devices in prescribed local areas to construct local RSS maps through recursive computation of the posterior distribution...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of selected topics in signal processing Ročník 11; číslo 3; s. 492 - 503
Hlavní autoři: Feng Yin, Gunnarsson, Fredrik
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.04.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1932-4553, 1941-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We propose a distributed recursive Gaussian process (drGP) regression framework for building received-signal-strength (RSS) map. The proposed framework adopts independent mobile devices in prescribed local areas to construct local RSS maps through recursive computation of the posterior distribution of the RSS on a fixed set of grids as training data gradually become available. The training input positions can be either precise or subject to errors of known distribution. All the local RSS maps are then fused to give a global map in the second step. The proposed framework is of significantly reduced computational complexity and scalable to big data generated from large-scale sensor networks. We further demonstrate its use in both static fingerprinting and mobile target tracking. The experimental results show that with our distributed framework satisfactory positioning accuracy can be achieved with much less complexity and storage than the standard framework.
AbstractList We propose a distributed recursive Gaussian process (drGP) regression framework for building received-signal-strength (RSS) map. The proposed framework adopts independent mobile devices in prescribed local areas to construct local RSS maps through recursive computation of the posterior distribution of the RSS on a fixed set of grids as training data gradually become available. The training input positions can be either precise or subject to errors of known distribution. All the local RSS maps are then fused to give a global map in the second step. The proposed framework is of significantly reduced computational complexity and scalable to big data generated from large-scale sensor networks. We further demonstrate its use in both static fingerprinting and mobile target tracking. The experimental results show that with our distributed framework satisfactory positioning accuracy can be achieved with much less complexity and storage than the standard framework.
Author Feng Yin
Gunnarsson, Fredrik
Author_xml – sequence: 1
  surname: Feng Yin
  fullname: Feng Yin
  email: yinfeng@cuhk.edu.cn
  organization: Shenzhen & Shenzhen Res. Inst. of Big Data, Univ. of Hong Kong, Shenzhen, China
– sequence: 2
  givenname: Fredrik
  surname: Gunnarsson
  fullname: Gunnarsson, Fredrik
  email: fredrik.gunnarsson@ericsson.com
  organization: Ericsson Res., Linkoping, Sweden
BookMark eNp9kD1PwzAQhi1UJNrCH4DFEnOKPxNnrAoUEKhVU-bIcS6VS0mC7SDx70lpxcDAcnfD-9wrPSM0qJsaELqkZEIpSW-esnW2nDBCkwmLE0WJPEFDmgoaEaHEYH9zFgkp-Rkaeb8lRCYxFUO0uLU-OFt0AUq8AtM5bz8Bz3XnvdU1XrrGgPfgcdU4vMoy_KJbPG3bne2B0OC1dhsIeO20ebP15hydVnrn4eK4x-j1_m49e4ieF_PH2fQ5MiyVIWIVK4oSgCtCRSI4KYwEpiSHWICphFG8qFIlKE1lCtwwrsuYx6lQpNQFLfkYXR_-tq756MCHfNt0ru4rc6pUKkXSzz7FDinjGu8dVHnr7Lt2Xzkl-V5c_iMu34vLj-J6SP2BjA062KYOTtvd_-jVAbUA8NuVqITIWPJv72p9Xg
CODEN IJSTGY
CitedBy_id crossref_primary_10_1109_JSTSP_2022_3223521
crossref_primary_10_1109_JIOT_2025_3566314
crossref_primary_10_1109_JIOT_2022_3199814
crossref_primary_10_1109_TNET_2023_3323522
crossref_primary_10_1109_TMC_2021_3120057
crossref_primary_10_1145_3494959
crossref_primary_10_1109_JSAC_2019_2904330
crossref_primary_10_1109_TIM_2021_3077679
crossref_primary_10_1109_LSP_2019_2925532
crossref_primary_10_1109_JSAC_2023_3322766
crossref_primary_10_1109_TMC_2024_3480983
crossref_primary_10_1109_ACCESS_2020_3000793
crossref_primary_10_1016_j_adhoc_2025_103999
crossref_primary_10_1109_JSEN_2018_2881892
crossref_primary_10_1016_j_sigpro_2023_109179
crossref_primary_10_1109_JSEN_2023_3348814
crossref_primary_10_1109_TSP_2020_3023008
crossref_primary_10_1109_TMC_2018_2883092
crossref_primary_10_1109_TNET_2022_3201545
crossref_primary_10_1109_TVT_2021_3121747
crossref_primary_10_1109_TMC_2023_3339089
crossref_primary_10_3390_drones8050199
Cites_doi 10.1109/ICASSP.2013.6638281
10.1145/1317425.1317431
10.1109/WCNC.2005.1424905
10.1017/CBO9781139344203
10.3390/s150922587
10.1016/j.patrec.2014.03.004
10.1109/78.978396
10.1109/IROS.2008.4651188
10.1109/TSP.2003.814623
10.1109/MSP.2014.2332611
10.1162/089976600300014908
10.15607/RSS.2006.II.039
10.1109/MSP.2013.2246292
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
H8D
L7M
DOI 10.1109/JSTSP.2017.2678105
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0484
EndPage 503
ExternalDocumentID 10_1109_JSTSP_2017_2678105
7870565
Genre orig-research
GrantInformation_xml – fundername: Marie Curie training programme
– fundername: European Union FP7
  funderid: 10.13039/501100004963
– fundername: Tracking in Complex Sensor Systems (TRAX)
  grantid: 607400
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
7SP
8FD
H8D
L7M
RIG
ID FETCH-LOGICAL-c295t-2f2bbdee380147430bc5e2853e64ecf4c83bf98411959e3c23ad6369480dab1d3
IEDL.DBID RIE
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399674500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-4553
IngestDate Mon Jun 30 10:18:21 EDT 2025
Sat Nov 29 04:10:31 EST 2025
Tue Nov 18 21:51:28 EST 2025
Tue Aug 26 16:43:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-2f2bbdee380147430bc5e2853e64ecf4c83bf98411959e3c23ad6369480dab1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1889547889
PQPubID 75721
PageCount 12
ParticipantIDs ieee_primary_7870565
crossref_primary_10_1109_JSTSP_2017_2678105
crossref_citationtrail_10_1109_JSTSP_2017_2678105
proquest_journals_1889547889
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of selected topics in signal processing
PublicationTitleAbbrev JSTSP
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
bishop (ref19) 2006
ref15
ref14
schwaighofer (ref3) 2004
snelson (ref27) 2006
quiñonero candela (ref9) 2005; 6
ref17
girard (ref18) 2004
ref16
titsias (ref12) 2009
yin (ref6) 2015
zhao (ref24) 2015
ref25
ref20
ref22
ref21
deisenroth (ref11) 2015; 37
ref8
ref7
goldsmith (ref1) 2006
ref4
rasmussen (ref2) 2006
ref5
rasmussen (ref26) 2010; 11
shen (ref10) 2006
martino (ref23) 2016
References_xml – start-page: 579
  year: 2004
  ident: ref3
  article-title: GPPS: A Gaussian process positioning system for cellular networks
  publication-title: Proc 16th Int Conf Adv Neural Inf Process Syst
– ident: ref13
  doi: 10.1109/ICASSP.2013.6638281
– ident: ref17
  doi: 10.1145/1317425.1317431
– ident: ref16
  doi: 10.1109/WCNC.2005.1424905
– volume: 37
  start-page: 1481
  year: 2015
  ident: ref11
  article-title: Distributed Gaussian processes
  publication-title: Proc Int Conf Mach Learning (ICML)
– ident: ref20
  doi: 10.1017/CBO9781139344203
– start-page: 1257
  year: 2006
  ident: ref27
  article-title: Sparse Gaussian processes using pseudo-inputs
  publication-title: Proc Int Conf Adv Neural Inf Process Syst
– ident: ref7
  doi: 10.3390/s150922587
– year: 2016
  ident: ref23
  article-title: Effective sample size for importance sampling based on discrepancy measures
  publication-title: Signal Process
– ident: ref14
  doi: 10.1016/j.patrec.2014.03.004
– volume: 11
  start-page: 3011
  year: 2010
  ident: ref26
  article-title: Gaussian processes for machine learning (GPML) toolbox
  publication-title: J Mach Learn Res
– ident: ref25
  doi: 10.1109/78.978396
– start-page: 1225
  year: 2006
  ident: ref10
  article-title: Fast Gaussian process regression using KD-trees
  publication-title: Proc 18th Int Adv Neural Inf Process Syst
– year: 2006
  ident: ref1
  publication-title: Wireless Communications
– ident: ref8
  doi: 10.1109/IROS.2008.4651188
– start-page: 567
  year: 2009
  ident: ref12
  article-title: Variational learning of inducing variables in sparse Gaussian processes
  publication-title: Proc Artif Intell Statist
– year: 2006
  ident: ref19
  publication-title: Pattern Recognition and Machine Learning (Information Science and Statistics)
– volume: 6
  start-page: 1939
  year: 2005
  ident: ref9
  article-title: A unifying view of sparse approximate Gaussian process regression
  publication-title: J Mach Learn Res
– ident: ref22
  doi: 10.1109/TSP.2003.814623
– year: 2006
  ident: ref2
  publication-title: Gaussian Processes for Machine Learning
– ident: ref5
  doi: 10.1109/MSP.2014.2332611
– start-page: 1061
  year: 2015
  ident: ref6
  article-title: Proximity report triggering threshold optimization for network-based indoor positioning
  publication-title: Proc Int Conf Inf Fusion
– ident: ref21
  doi: 10.1162/089976600300014908
– start-page: 1046
  year: 2015
  ident: ref24
  article-title: Particle filtering for positioning based on proximity report
  publication-title: Proc Int Conf Inf Fusion
– year: 2004
  ident: ref18
  article-title: Approximate methods for propagation of uncertainty with Gaussian process model
– ident: ref4
  doi: 10.15607/RSS.2006.II.039
– ident: ref15
  doi: 10.1109/MSP.2013.2246292
SSID ssj0057614
Score 2.3769958
Snippet We propose a distributed recursive Gaussian process (drGP) regression framework for building received-signal-strength (RSS) map. The proposed framework adopts...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 492
SubjectTerms Approximation algorithms
Big Data
Complexity
Distributed algorithm
Fingerprinting
Gaussian process
Gaussian processes
Kernel
Mobile communication
particle filtering
recursive algorithm
Recursive functions
RSS fingerprinting
Signal processing algorithms
Tracking
Training
Title Distributed Recursive Gaussian Processes for RSS Map Applied to Target Tracking
URI https://ieeexplore.ieee.org/document/7870565
https://www.proquest.com/docview/1889547889
Volume 11
WOSCitedRecordID wos000399674500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1941-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057614
  issn: 1932-4553
  databaseCode: RIE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGxAEOvAZiMFAO3KBb2_SRHBEwOMCYtoF2q9rElZDQNu3B7yfOsmkSCIlbD0lV2Y791bE_A1wpJZVMQ-0Fuiw9mm3rmTAkPBGjSHL0i8DyFLw_p52OGA5ltwI3614YRLTFZ9ikR3uXr8dqQamyFhmXASBbsJWmybJXa-V1DWwO3A1y6EVxzFcNMr5sGRPvd6mKK22GxjcHNKpuIwjZqSo_XLGNL-39_33ZAew5HMlul4o_hAqOjmB3g12wBq_3RIpL86xQsx7l1alUnT3mixl1TjLXI4AzZoAr6_X77CWfMAdL2XzMBrZKnJlwpiihfgxv7YfB3ZPn5id4KpTx3AvLsCg0IieGGIMU_ELFGJr4jEmEqoyU4EUpRUSsbxK5CnmuE57ISPg6LwLNT6A6Go_wFJivpOZaiiBFjBQmgusoTTmPo1zouFB1CFYCzZQjF6cZF5-Z_cnwZWaVkJESMqeEOlyv90yW1Bp_rq6R2NcrncTr0FjpLXOnb5YFQkjiKRPy7Pdd57BD715W4DSgOp8u8AK21df8Yza9tIb1DaXAyj4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED6xbtLgARg_RKEwP-xtC01sJ7EfEawDrZSq7SbeosS-SEioRbTl78fnulWlIaS95cFWorvz3Zfz3XcA34zRRufcRomt64hm20YuDKlIpaiyEuMq8TwFf7t5r6fu73V_A36semEQ0Ref4Tk9-rt8OzFzSpW1ybgcAPkAH1Mpebzo1lr6XQeck3CHzCOZpmLZIhPrtjPyYZ_quPJz7rxzQsPq1sKQn6vyjzP2Eaaz83_ftgvbAUmyi4Xqv8AGjvdga41fcB_urogWlyZaoWUDyqxTsTr7Vc6n1DvJQpcATpmDrmwwHLLb8okFYMpmEzbydeLMBTRDKfUD-NP5Obq8jsIEhchwnc4iXvOqsoiCOGIcVogrkyJ3ERoziaaWRomq1koS75tGYbgobSYyLVVsyyqx4hAa48kYj4DFRlthtUpyRGkwU8LKPBcilaWyaWWakCwFWphAL05TLh4L_5sR68IroSAlFEEJTfi-2vO0INd4d_U-iX21Mki8Ca2l3opw_qZFopQmpjKlj9_e9RU-X49uu0X3pvf7BDbpPYt6nBY0Zs9zPIVP5mX2MH0-80b2ClWmzYU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Recursive+Gaussian+Processes+for+RSS+Map+Applied+to+Target+Tracking&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Yin%2C+Feng&rft.au=Gunnarsson%2C+Fredrik&rft.date=2017-04-01&rft.issn=1932-4553&rft.eissn=1941-0484&rft.volume=11&rft.issue=3&rft.spage=492&rft.epage=503&rft_id=info:doi/10.1109%2FJSTSP.2017.2678105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTSP_2017_2678105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon