Distributed Recursive Gaussian Processes for RSS Map Applied to Target Tracking
We propose a distributed recursive Gaussian process (drGP) regression framework for building received-signal-strength (RSS) map. The proposed framework adopts independent mobile devices in prescribed local areas to construct local RSS maps through recursive computation of the posterior distribution...
Gespeichert in:
| Veröffentlicht in: | IEEE journal of selected topics in signal processing Jg. 11; H. 3; S. 492 - 503 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.04.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1932-4553, 1941-0484 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We propose a distributed recursive Gaussian process (drGP) regression framework for building received-signal-strength (RSS) map. The proposed framework adopts independent mobile devices in prescribed local areas to construct local RSS maps through recursive computation of the posterior distribution of the RSS on a fixed set of grids as training data gradually become available. The training input positions can be either precise or subject to errors of known distribution. All the local RSS maps are then fused to give a global map in the second step. The proposed framework is of significantly reduced computational complexity and scalable to big data generated from large-scale sensor networks. We further demonstrate its use in both static fingerprinting and mobile target tracking. The experimental results show that with our distributed framework satisfactory positioning accuracy can be achieved with much less complexity and storage than the standard framework. |
|---|---|
| AbstractList | We propose a distributed recursive Gaussian process (drGP) regression framework for building received-signal-strength (RSS) map. The proposed framework adopts independent mobile devices in prescribed local areas to construct local RSS maps through recursive computation of the posterior distribution of the RSS on a fixed set of grids as training data gradually become available. The training input positions can be either precise or subject to errors of known distribution. All the local RSS maps are then fused to give a global map in the second step. The proposed framework is of significantly reduced computational complexity and scalable to big data generated from large-scale sensor networks. We further demonstrate its use in both static fingerprinting and mobile target tracking. The experimental results show that with our distributed framework satisfactory positioning accuracy can be achieved with much less complexity and storage than the standard framework. |
| Author | Feng Yin Gunnarsson, Fredrik |
| Author_xml | – sequence: 1 surname: Feng Yin fullname: Feng Yin email: yinfeng@cuhk.edu.cn organization: Shenzhen & Shenzhen Res. Inst. of Big Data, Univ. of Hong Kong, Shenzhen, China – sequence: 2 givenname: Fredrik surname: Gunnarsson fullname: Gunnarsson, Fredrik email: fredrik.gunnarsson@ericsson.com organization: Ericsson Res., Linkoping, Sweden |
| BookMark | eNp9kD1PwzAQhi1UJNrCH4DFEnOKPxNnrAoUEKhVU-bIcS6VS0mC7SDx70lpxcDAcnfD-9wrPSM0qJsaELqkZEIpSW-esnW2nDBCkwmLE0WJPEFDmgoaEaHEYH9zFgkp-Rkaeb8lRCYxFUO0uLU-OFt0AUq8AtM5bz8Bz3XnvdU1XrrGgPfgcdU4vMoy_KJbPG3bne2B0OC1dhsIeO20ebP15hydVnrn4eK4x-j1_m49e4ieF_PH2fQ5MiyVIWIVK4oSgCtCRSI4KYwEpiSHWICphFG8qFIlKE1lCtwwrsuYx6lQpNQFLfkYXR_-tq756MCHfNt0ru4rc6pUKkXSzz7FDinjGu8dVHnr7Lt2Xzkl-V5c_iMu34vLj-J6SP2BjA062KYOTtvd_-jVAbUA8NuVqITIWPJv72p9Xg |
| CODEN | IJSTGY |
| CitedBy_id | crossref_primary_10_1109_JSTSP_2022_3223521 crossref_primary_10_1109_JIOT_2025_3566314 crossref_primary_10_1109_JIOT_2022_3199814 crossref_primary_10_1109_TNET_2023_3323522 crossref_primary_10_1109_TMC_2021_3120057 crossref_primary_10_1145_3494959 crossref_primary_10_1109_JSAC_2019_2904330 crossref_primary_10_1109_TIM_2021_3077679 crossref_primary_10_1109_LSP_2019_2925532 crossref_primary_10_1109_JSAC_2023_3322766 crossref_primary_10_1109_TMC_2024_3480983 crossref_primary_10_1109_ACCESS_2020_3000793 crossref_primary_10_1016_j_adhoc_2025_103999 crossref_primary_10_1109_JSEN_2018_2881892 crossref_primary_10_1016_j_sigpro_2023_109179 crossref_primary_10_1109_JSEN_2023_3348814 crossref_primary_10_1109_TSP_2020_3023008 crossref_primary_10_1109_TMC_2018_2883092 crossref_primary_10_1109_TNET_2022_3201545 crossref_primary_10_1109_TVT_2021_3121747 crossref_primary_10_1109_TMC_2023_3339089 crossref_primary_10_3390_drones8050199 |
| Cites_doi | 10.1109/ICASSP.2013.6638281 10.1145/1317425.1317431 10.1109/WCNC.2005.1424905 10.1017/CBO9781139344203 10.3390/s150922587 10.1016/j.patrec.2014.03.004 10.1109/78.978396 10.1109/IROS.2008.4651188 10.1109/TSP.2003.814623 10.1109/MSP.2014.2332611 10.1162/089976600300014908 10.15607/RSS.2006.II.039 10.1109/MSP.2013.2246292 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD H8D L7M |
| DOI | 10.1109/JSTSP.2017.2678105 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0484 |
| EndPage | 503 |
| ExternalDocumentID | 10_1109_JSTSP_2017_2678105 7870565 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Marie Curie training programme – fundername: European Union FP7 funderid: 10.13039/501100004963 – fundername: Tracking in Complex Sensor Systems (TRAX) grantid: 607400 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX CITATION 7SP 8FD H8D L7M RIG |
| ID | FETCH-LOGICAL-c295t-2f2bbdee380147430bc5e2853e64ecf4c83bf98411959e3c23ad6369480dab1d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 49 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399674500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-4553 |
| IngestDate | Mon Jun 30 10:18:21 EDT 2025 Sat Nov 29 04:10:31 EST 2025 Tue Nov 18 21:51:28 EST 2025 Tue Aug 26 16:43:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-2f2bbdee380147430bc5e2853e64ecf4c83bf98411959e3c23ad6369480dab1d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1889547889 |
| PQPubID | 75721 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_7870565 crossref_primary_10_1109_JSTSP_2017_2678105 crossref_citationtrail_10_1109_JSTSP_2017_2678105 proquest_journals_1889547889 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-04-01 |
| PublicationDateYYYYMMDD | 2017-04-01 |
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE journal of selected topics in signal processing |
| PublicationTitleAbbrev | JSTSP |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 bishop (ref19) 2006 ref15 ref14 schwaighofer (ref3) 2004 snelson (ref27) 2006 quiñonero candela (ref9) 2005; 6 ref17 girard (ref18) 2004 ref16 titsias (ref12) 2009 yin (ref6) 2015 zhao (ref24) 2015 ref25 ref20 ref22 ref21 deisenroth (ref11) 2015; 37 ref8 ref7 goldsmith (ref1) 2006 ref4 rasmussen (ref2) 2006 ref5 rasmussen (ref26) 2010; 11 shen (ref10) 2006 martino (ref23) 2016 |
| References_xml | – start-page: 579 year: 2004 ident: ref3 article-title: GPPS: A Gaussian process positioning system for cellular networks publication-title: Proc 16th Int Conf Adv Neural Inf Process Syst – ident: ref13 doi: 10.1109/ICASSP.2013.6638281 – ident: ref17 doi: 10.1145/1317425.1317431 – ident: ref16 doi: 10.1109/WCNC.2005.1424905 – volume: 37 start-page: 1481 year: 2015 ident: ref11 article-title: Distributed Gaussian processes publication-title: Proc Int Conf Mach Learning (ICML) – ident: ref20 doi: 10.1017/CBO9781139344203 – start-page: 1257 year: 2006 ident: ref27 article-title: Sparse Gaussian processes using pseudo-inputs publication-title: Proc Int Conf Adv Neural Inf Process Syst – ident: ref7 doi: 10.3390/s150922587 – year: 2016 ident: ref23 article-title: Effective sample size for importance sampling based on discrepancy measures publication-title: Signal Process – ident: ref14 doi: 10.1016/j.patrec.2014.03.004 – volume: 11 start-page: 3011 year: 2010 ident: ref26 article-title: Gaussian processes for machine learning (GPML) toolbox publication-title: J Mach Learn Res – ident: ref25 doi: 10.1109/78.978396 – start-page: 1225 year: 2006 ident: ref10 article-title: Fast Gaussian process regression using KD-trees publication-title: Proc 18th Int Adv Neural Inf Process Syst – year: 2006 ident: ref1 publication-title: Wireless Communications – ident: ref8 doi: 10.1109/IROS.2008.4651188 – start-page: 567 year: 2009 ident: ref12 article-title: Variational learning of inducing variables in sparse Gaussian processes publication-title: Proc Artif Intell Statist – year: 2006 ident: ref19 publication-title: Pattern Recognition and Machine Learning (Information Science and Statistics) – volume: 6 start-page: 1939 year: 2005 ident: ref9 article-title: A unifying view of sparse approximate Gaussian process regression publication-title: J Mach Learn Res – ident: ref22 doi: 10.1109/TSP.2003.814623 – year: 2006 ident: ref2 publication-title: Gaussian Processes for Machine Learning – ident: ref5 doi: 10.1109/MSP.2014.2332611 – start-page: 1061 year: 2015 ident: ref6 article-title: Proximity report triggering threshold optimization for network-based indoor positioning publication-title: Proc Int Conf Inf Fusion – ident: ref21 doi: 10.1162/089976600300014908 – start-page: 1046 year: 2015 ident: ref24 article-title: Particle filtering for positioning based on proximity report publication-title: Proc Int Conf Inf Fusion – year: 2004 ident: ref18 article-title: Approximate methods for propagation of uncertainty with Gaussian process model – ident: ref4 doi: 10.15607/RSS.2006.II.039 – ident: ref15 doi: 10.1109/MSP.2013.2246292 |
| SSID | ssj0057614 |
| Score | 2.3770833 |
| Snippet | We propose a distributed recursive Gaussian process (drGP) regression framework for building received-signal-strength (RSS) map. The proposed framework adopts... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 492 |
| SubjectTerms | Approximation algorithms Big Data Complexity Distributed algorithm Fingerprinting Gaussian process Gaussian processes Kernel Mobile communication particle filtering recursive algorithm Recursive functions RSS fingerprinting Signal processing algorithms Tracking Training |
| Title | Distributed Recursive Gaussian Processes for RSS Map Applied to Target Tracking |
| URI | https://ieeexplore.ieee.org/document/7870565 https://www.proquest.com/docview/1889547889 |
| Volume | 11 |
| WOSCitedRecordID | wos000399674500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057614 issn: 1932-4553 databaseCode: RIE dateStart: 20070101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYG4gAH3ojxUg7coNua9JEcETC4ANMGEreqSVwJCW0T6_j9xFk6IYGQ6KHqIakq24ldx_4-gHO3YhItjYl0ZTBKjLCRTukmezZ2DkjbqvJkE_njo3x9VYMWXC57YRDRF59hhx79Wb6dmDmlyrpkXC4AWYGVPM8WvVrNruvC5jicIPMoSVPRNMj0VNeZ-GhAVVx5h7u9OSaqum9OyLOq_NiKvX_pb_3vy7ZhM8SR7Gqh-B1o4XgXNr6hC-7B0w2B4hKfFVo2pLw6laqzu3I-o85JFnoEcMZc4MqGoxF7KKcshKWsnrBnXyXOnDszlFDfh5f-7fP1fRT4EyLDVVpHvOJaW0RBCDEuUuhpkyJ3_hmzBE2VGCl0pWRCqG8KheGitJnIVOL0VOrYigNYHU_GeAhMa-KdirkWVifuUhmWvJS2zIzJscQ2xI1ACxPAxYnj4r3wPxk9VXglFKSEIiihDRfLOdMFtMafo_dI7MuRQeJtOGn0VoTVNytiKRXhlEl19PusY1indy8qcE5gtf6Y4ymsmc_6bfZx5g3rC4-YzJ0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6VggQcgF1AlKcPe2NDE9tJ7SPiLaAg2pW4RbE9kZBQi2jL78fjuhXSrlYihygHW4lmxp7JeOb7AH75FSONsjYxtcVEWuESk9NNpS7zDsi4ug5kE51uVz0_68cG_J73wiBiKD7DE3oMZ_luaCeUKmuTcfkAZAEWcyl5Ou3Wmu27PnDO4hkyT2Sei1mLTKrb3sh7j1TH1TnhfnfOiKzuixsKvCp_bcbBw1yuf-_bNmAtRpLsdKr6H9DAwU9Y_YIvuAkP5wSLS4xW6NgTZdapWJ1dVZMR9U6y2CWAI-ZDV_bU67H76o3FwJSNh6wf6sSZd2iWUupb8Ofyon92nUQGhcRynY8TXnNjHKIgjBgfK6TG5si9h8ZCoq2lVcLUWknCfdMoLBeVK0ShpddUZTIntqE5GA5wB5gxxDyVcSOckf7SBVa8Uq4qrO1ghS3IZgItbYQXJ5aL1zL8ZqS6DEooSQllVEILjudz3qbgGv8dvUlin4-MEm_B_kxvZVx_ozJTShNSmdK7_551BMvX_fu78u6me7sHK_SeaT3OPjTH7xM8gCX7MX4ZvR8GI_sEXxDP5A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Recursive+Gaussian+Processes+for+RSS+Map+Applied+to+Target+Tracking&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Feng+Yin&rft.au=Gunnarsson%2C+Fredrik&rft.date=2017-04-01&rft.pub=IEEE&rft.issn=1932-4553&rft.volume=11&rft.issue=3&rft.spage=492&rft.epage=503&rft_id=info:doi/10.1109%2FJSTSP.2017.2678105&rft.externalDocID=7870565 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon |