An Evolutionary Framework for Modelling Unknown Behaviours of Other Agents

Multiagent decision making becomes complicated when a subject agent interacts with other agents who could be either collaborative or competitive in their common environment. Generally the subject agent does not know what exact behaviours other agents will execute in the coming interactions. This occ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on emerging topics in computational intelligence Ročník 7; číslo 4; s. 1 - 14
Hlavní autoři: Pan, Yinghui, Ma, Biyang, Zeng, Yifeng, Tang, Jing, Zeng, Buxin, Ming, Zhong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2471-285X, 2471-285X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Multiagent decision making becomes complicated when a subject agent interacts with other agents who could be either collaborative or competitive in their common environment. Generally the subject agent does not know what exact behaviours other agents will execute in the coming interactions. This occurs even when the agents are collaborative and cannot fully disclose their behaviours due to their privacy concerns. With the purpose of improving prediction of the true behaviours of other agents, conventional approaches often employ either an exhaust list or a guided search to expand the set of possible behaviours of other agents. In this article, we investigate an evolutionary approach guided by prior knowledge about other agents and develop a genetic algorithm based framework to modelling unknown behaviours, which may contain the true behaviours of other agents. We develop a new framework with a multi-population genetic algorithm in a general multiagent decision model - interactive dynamic influence diagrams, which represents how multiple agents optimise their interactive decisions from the viewpoint of individual agents. The new framework also provides an alternative way to solving the decision model. We demonstrate the performance of the proposed methods in two problem domains and provide empirical results in support.
AbstractList Multiagent decision making becomes complicated when a subject agent interacts with other agents who could be either collaborative or competitive in their common environment. Generally the subject agent does not know what exact behaviours other agents will execute in the coming interactions. This occurs even when the agents are collaborative and cannot fully disclose their behaviours due to their privacy concerns. With the purpose of improving prediction of the true behaviours of other agents, conventional approaches often employ either an exhaust list or a guided search to expand the set of possible behaviours of other agents. In this article, we investigate an evolutionary approach guided by prior knowledge about other agents and develop a genetic algorithm based framework to modelling unknown behaviours, which may contain the true behaviours of other agents. We develop a new framework with a multi-population genetic algorithm in a general multiagent decision model - interactive dynamic influence diagrams, which represents how multiple agents optimise their interactive decisions from the viewpoint of individual agents. The new framework also provides an alternative way to solving the decision model. We demonstrate the performance of the proposed methods in two problem domains and provide empirical results in support.
Author Ma, Biyang
Pan, Yinghui
Zeng, Buxin
Ming, Zhong
Zeng, Yifeng
Tang, Jing
Author_xml – sequence: 1
  givenname: Yinghui
  surname: Pan
  fullname: Pan, Yinghui
  organization: National Engineering Laboratory for Big Data System Computing Technology, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 2
  givenname: Biyang
  surname: Ma
  fullname: Ma, Biyang
  organization: Department of Computer, Minnan Normal University, Zhangzhou, China
– sequence: 3
  givenname: Yifeng
  orcidid: 0000-0002-5246-403X
  surname: Zeng
  fullname: Zeng, Yifeng
  organization: Department of Computer and Information Sciences, Northumbria University, Newcastle, U.K
– sequence: 4
  givenname: Jing
  surname: Tang
  fullname: Tang, Jing
  organization: Newcastle Business School, Northumbria University, Newcastle, U.K
– sequence: 5
  givenname: Buxin
  surname: Zeng
  fullname: Zeng, Buxin
  organization: Department of Computer and Information Sciences, Northumbria University, Newcastle, U.K
– sequence: 6
  givenname: Zhong
  orcidid: 0000-0001-8424-4325
  surname: Ming
  fullname: Ming, Zhong
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
BookMark eNp9kEFPAjEQhRuDiYj8Ab008Qy2U8q2RySgGA0XSLw13d0uLCwttgvEf28RYowHTzOZzJv35rtGDeusQeiWki6lRD7MRrPhpAsEoMsAJCPiAjWhl9AOCP7e-NVfoXYIK0IISE4Z7zXRy8Di0d5Vu7p0VvtPPPZ6Yw7Or3HhPH5zuamq0i7w3K6tO1j8aJZ6X7qdD9gVeFovjceDhbF1uEGXha6CaZ9rC83HMdlz53X6NBkOXjtZdK07UFABSV-zJJNU5Ck3PGU5gKGQck1MP9d9KtJC05RxSWTB4xSElpCYPKGStdD96e7Wu4-dCbVaxTg2WioQPcKElJLELThtZd6F4E2htr7cxA8VJeqITX1jU0ds6owtisQfUVbW-oim9rqs_pfenaSlMebHK0aRlFH2BY1bfEM
CODEN ITETCU
CitedBy_id crossref_primary_10_3390_jmse12050791
crossref_primary_10_1007_s10462_025_11355_y
Cites_doi 10.1016/j.artint.2020.103292
10.1007/s12293-021-00343-8
10.1016/j.ins.2021.09.039
10.24963/ijcai.2020/12
10.1613/jair.1.12889
10.1007/s10458-007-9026-5
10.1145/1160633.1160816
10.1016/j.artint.2019.103202
10.1007/s10458-008-9064-7
10.1016/j.asoc.2018.06.050
10.1016/j.artint.2020.103431
10.1007/978-0-387-68282-2
10.1007/s10115-021-01600-5
10.1038/nature24270
10.1609/aimag.v38i3.2756
10.1002/int.23075
10.1016/j.asoc.2005.01.003
10.1016/j.artint.2018.01.002
10.1007/s10115-015-0912-x
10.1613/jair.3461
10.1109/21.52548
10.1109/TSMC.2019.2958846
10.1109/MCI.2018.2840727
10.1613/jair.1579
10.1109/TEVC.2016.2577593
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TETCI.2022.3229308
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2471-285X
EndPage 14
ExternalDocumentID 10_1109_TETCI_2022_3229308
9999131
Genre orig-research
GrantInformation_xml – fundername: EPSRC New Investigator
  grantid: EP/S011609/1
– fundername: National Natural Science Foundation of China
  grantid: 61836005; 62176225; 62276168; 61875169
  funderid: 10.13039/501100001809
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
EJD
7SP
8FD
ABAZT
L7M
ID FETCH-LOGICAL-c295t-2f18276a37c918db5e5b3d22e12b5a0e6da618bfa1b35909f55a028a927ed7193
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000906230400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2471-285X
IngestDate Sun Jun 29 16:54:45 EDT 2025
Sat Nov 29 05:12:08 EST 2025
Tue Nov 18 22:43:33 EST 2025
Tue Nov 25 14:44:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-2f18276a37c918db5e5b3d22e12b5a0e6da618bfa1b35909f55a028a927ed7193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8424-4325
0000-0002-5246-403X
PQID 2840389990
PQPubID 4437216
PageCount 14
ParticipantIDs crossref_primary_10_1109_TETCI_2022_3229308
ieee_primary_9999131
crossref_citationtrail_10_1109_TETCI_2022_3229308
proquest_journals_2840389990
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on emerging topics in computational intelligence
PublicationTitleAbbrev TETCI
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref31
ref10
ref2
ref1
ref17
ref16
ref19
ref18
liu (ref23) 0
conroy (ref8) 0
wolfgang (ref11) 1998
ma (ref32) 0
karimpanal (ref30) 2021; 25
ref24
higham (ref29) 1996
ref26
ref25
ref20
ref21
pynadath (ref13) 0
ref28
ref27
ref7
ref9
ref4
ref3
silver (ref22) 2017; 550
ref6
ref5
References_xml – ident: ref10
  doi: 10.1016/j.artint.2020.103292
– ident: ref25
  doi: 10.1007/s12293-021-00343-8
– ident: ref15
  doi: 10.1016/j.ins.2021.09.039
– start-page: 1911
  year: 0
  ident: ref32
  article-title: Ev-IDID: Enhancing solutions to interactive dynamic influence diagrams through evolutionary algorithms
  publication-title: Proc 21st Int Conf Auton Agents Multiagent Syst
– ident: ref21
  doi: 10.24963/ijcai.2020/12
– ident: ref2
  doi: 10.1613/jair.1.12889
– ident: ref3
  doi: 10.1007/s10458-007-9026-5
– ident: ref14
  doi: 10.1145/1160633.1160816
– ident: ref9
  doi: 10.1016/j.artint.2019.103202
– volume: 25
  start-page: 386
  year: 2021
  ident: ref30
  article-title: Neuro-evolutionary frameworks for generalized learning agents
  publication-title: IEEE Trans Evol Comput
– ident: ref5
  doi: 10.1007/s10458-008-9064-7
– ident: ref17
  doi: 10.1016/j.asoc.2018.06.050
– ident: ref28
  doi: 10.1016/j.artint.2020.103431
– ident: ref27
  doi: 10.1007/978-0-387-68282-2
– ident: ref24
  doi: 10.1007/s10115-021-01600-5
– year: 1998
  ident: ref11
  publication-title: Genetic Programming An Introduction On the Automatic Evolution of Computer Programs and its Applications
– start-page: 1162
  year: 0
  ident: ref8
  article-title: A value equivalence approach for solving interactive dynamic influence diagrams
  publication-title: Proc 15th Int Conf Auton Agents Multiagent Syst
– volume: 550
  start-page: 354
  year: 2017
  ident: ref22
  article-title: Mastering the game of go without human knowledge
  publication-title: Nature
  doi: 10.1038/nature24270
– year: 1996
  ident: ref29
  publication-title: Accuracy and Stability of Numerical Algorithms
– ident: ref12
  doi: 10.1609/aimag.v38i3.2756
– ident: ref31
  doi: 10.1002/int.23075
– ident: ref16
  doi: 10.1016/j.asoc.2005.01.003
– start-page: 52
  year: 0
  ident: ref23
  article-title: Self-improving generative adversarial reinforcement learning
  publication-title: Proc 18th Int Conf Auton Agents MultiAgent Syst
– ident: ref1
  doi: 10.1016/j.artint.2018.01.002
– ident: ref7
  doi: 10.1007/s10115-015-0912-x
– ident: ref6
  doi: 10.1613/jair.3461
– ident: ref26
  doi: 10.1109/21.52548
– start-page: 1038
  year: 0
  ident: ref13
  article-title: Minimal mental models
  publication-title: Proc 22nd AAAI Conf Artif Intell
– ident: ref19
  doi: 10.1109/TSMC.2019.2958846
– ident: ref20
  doi: 10.1109/MCI.2018.2840727
– ident: ref4
  doi: 10.1613/jair.1579
– ident: ref18
  doi: 10.1109/TEVC.2016.2577593
SSID ssj0002951354
Score 2.241457
Snippet Multiagent decision making becomes complicated when a subject agent interacts with other agents who could be either collaborative or competitive in their...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Collaboration
Computational modeling
Decision making
decision model
Evolutionary behaviour
genetic algorithm
Genetic algorithms
Heuristic algorithms
intelligent agents
Mathematical models
Modelling
Multi-agent systems
Multiagent systems
Planning
Predictive models
Title An Evolutionary Framework for Modelling Unknown Behaviours of Other Agents
URI https://ieeexplore.ieee.org/document/9999131
https://www.proquest.com/docview/2840389990
Volume 7
WOSCitedRecordID wos000906230400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2471-285X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951354
  issn: 2471-285X
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4cGLH0xxOiUHb9qtST_SHIdsqMj0sMluJU1SEKQb7TbwvzdJ0yIogre2SaD55bX5vZf3AXAjaI4V4ZlnQtG8UFNmj_mEe4JKweM8CYU90X17prNZslyy1w7ctbEwSinrfKaG5tKe5cuV2BpT2YgZNmOCpvcojetYrdaeQjRVCKKwiYvx2Wg-md8_ag2QkKGWWhaYCpLf9h5bTOXHH9huK9Oj_73QMRw6-ojG9XqfQEcVPXgaF2iyczLEy080bTyukKakyJQ7s5m30aIwJrQCuaSI27JCqxy9GA6IxibGqjqFxVRP6MFzNRI8oWe88UiuFQQa84AKhhOZRSrKAkmIwiSLuK9iyWOcZDnHWRAxn-WRfkoSzghVkmr2dgbdYlWoc0AKM0mzgES6QetBOU9CiQOhOZ_QNxj3ATfopcIlEDd1LD5Sq0j4LLWIpwbx1CHeh9t2zLpOn_Fn757BuO3p4O3DoFmk1H1hVaq3VZsbkPkXv4-6hANTGr521htAd1Nu1RXsi93mvSqvrfB8ARjdwpM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jCnrxgylOp-bgTbs1adM0xyEbm87pYZPdQpqmIEgn6zbwvzdJ0yIogre2SaD55bX5vZf3AcCNpBlSWCSeCUXzQk2ZPeZj4UmaShFlcSjtie7rhE6n8WLBXhrgro6FUUpZ5zPVNZf2LD9dyo0xlfWYYTMmaHqHhCH2y2it2qKCNVkISFhFxvisNxvM7sdaB8S4q-WWBaaG5Lfdx5ZT-fEPthvL8PB_r3QEDhyBhP1yxY9BQ-Ut8NDP4WDrpEisPuGw8rmCmpRCU_DM5t6G89wY0XLo0iJuVgVcZvDZsEDYN1FWxQmYD_WERp6rkuBJPeO1hzOtItBIBFQyFKcJUSQJUowVwgkRvopSEaE4yQRKAsJ8lhH9FMeCYapSqvnbKWjmy1ydAagQS2kSYKIbtCaUiThMUSA165P6BqE2QBV6XLoU4qaSxTu3qoTPuEWcG8S5Q7wNbusxH2UCjT97twzGdU8Hbxt0qkXi7hsruN5YbXZA5p__Puoa7I1mTxM-GU8fL8C-KRRfuu51QHO92qhLsCu367didWUF6QtiwMXa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Evolutionary+Framework+for+Modelling+Unknown+Behaviours+of+Other+Agents&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Pan%2C+Yinghui&rft.au=Ma%2C+Biyang&rft.au=Zeng%2C+Yifeng&rft.au=Tang%2C+Jing&rft.date=2023-08-01&rft.pub=IEEE&rft.eissn=2471-285X&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTETCI.2022.3229308&rft.externalDocID=9999131
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon