An Evolutionary Framework for Modelling Unknown Behaviours of Other Agents
Multiagent decision making becomes complicated when a subject agent interacts with other agents who could be either collaborative or competitive in their common environment. Generally the subject agent does not know what exact behaviours other agents will execute in the coming interactions. This occ...
Uloženo v:
| Vydáno v: | IEEE transactions on emerging topics in computational intelligence Ročník 7; číslo 4; s. 1 - 14 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2471-285X, 2471-285X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Multiagent decision making becomes complicated when a subject agent interacts with other agents who could be either collaborative or competitive in their common environment. Generally the subject agent does not know what exact behaviours other agents will execute in the coming interactions. This occurs even when the agents are collaborative and cannot fully disclose their behaviours due to their privacy concerns. With the purpose of improving prediction of the true behaviours of other agents, conventional approaches often employ either an exhaust list or a guided search to expand the set of possible behaviours of other agents. In this article, we investigate an evolutionary approach guided by prior knowledge about other agents and develop a genetic algorithm based framework to modelling unknown behaviours, which may contain the true behaviours of other agents. We develop a new framework with a multi-population genetic algorithm in a general multiagent decision model - interactive dynamic influence diagrams, which represents how multiple agents optimise their interactive decisions from the viewpoint of individual agents. The new framework also provides an alternative way to solving the decision model. We demonstrate the performance of the proposed methods in two problem domains and provide empirical results in support. |
|---|---|
| AbstractList | Multiagent decision making becomes complicated when a subject agent interacts with other agents who could be either collaborative or competitive in their common environment. Generally the subject agent does not know what exact behaviours other agents will execute in the coming interactions. This occurs even when the agents are collaborative and cannot fully disclose their behaviours due to their privacy concerns. With the purpose of improving prediction of the true behaviours of other agents, conventional approaches often employ either an exhaust list or a guided search to expand the set of possible behaviours of other agents. In this article, we investigate an evolutionary approach guided by prior knowledge about other agents and develop a genetic algorithm based framework to modelling unknown behaviours, which may contain the true behaviours of other agents. We develop a new framework with a multi-population genetic algorithm in a general multiagent decision model - interactive dynamic influence diagrams, which represents how multiple agents optimise their interactive decisions from the viewpoint of individual agents. The new framework also provides an alternative way to solving the decision model. We demonstrate the performance of the proposed methods in two problem domains and provide empirical results in support. |
| Author | Ma, Biyang Pan, Yinghui Zeng, Buxin Ming, Zhong Zeng, Yifeng Tang, Jing |
| Author_xml | – sequence: 1 givenname: Yinghui surname: Pan fullname: Pan, Yinghui organization: National Engineering Laboratory for Big Data System Computing Technology, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 2 givenname: Biyang surname: Ma fullname: Ma, Biyang organization: Department of Computer, Minnan Normal University, Zhangzhou, China – sequence: 3 givenname: Yifeng orcidid: 0000-0002-5246-403X surname: Zeng fullname: Zeng, Yifeng organization: Department of Computer and Information Sciences, Northumbria University, Newcastle, U.K – sequence: 4 givenname: Jing surname: Tang fullname: Tang, Jing organization: Newcastle Business School, Northumbria University, Newcastle, U.K – sequence: 5 givenname: Buxin surname: Zeng fullname: Zeng, Buxin organization: Department of Computer and Information Sciences, Northumbria University, Newcastle, U.K – sequence: 6 givenname: Zhong orcidid: 0000-0001-8424-4325 surname: Ming fullname: Ming, Zhong organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China |
| BookMark | eNp9kEFPAjEQhRuDiYj8Ab008Qy2U8q2RySgGA0XSLw13d0uLCwttgvEf28RYowHTzOZzJv35rtGDeusQeiWki6lRD7MRrPhpAsEoMsAJCPiAjWhl9AOCP7e-NVfoXYIK0IISE4Z7zXRy8Di0d5Vu7p0VvtPPPZ6Yw7Or3HhPH5zuamq0i7w3K6tO1j8aJZ6X7qdD9gVeFovjceDhbF1uEGXha6CaZ9rC83HMdlz53X6NBkOXjtZdK07UFABSV-zJJNU5Ck3PGU5gKGQck1MP9d9KtJC05RxSWTB4xSElpCYPKGStdD96e7Wu4-dCbVaxTg2WioQPcKElJLELThtZd6F4E2htr7cxA8VJeqITX1jU0ds6owtisQfUVbW-oim9rqs_pfenaSlMebHK0aRlFH2BY1bfEM |
| CODEN | ITETCU |
| CitedBy_id | crossref_primary_10_3390_jmse12050791 crossref_primary_10_1007_s10462_025_11355_y |
| Cites_doi | 10.1016/j.artint.2020.103292 10.1007/s12293-021-00343-8 10.1016/j.ins.2021.09.039 10.24963/ijcai.2020/12 10.1613/jair.1.12889 10.1007/s10458-007-9026-5 10.1145/1160633.1160816 10.1016/j.artint.2019.103202 10.1007/s10458-008-9064-7 10.1016/j.asoc.2018.06.050 10.1016/j.artint.2020.103431 10.1007/978-0-387-68282-2 10.1007/s10115-021-01600-5 10.1038/nature24270 10.1609/aimag.v38i3.2756 10.1002/int.23075 10.1016/j.asoc.2005.01.003 10.1016/j.artint.2018.01.002 10.1007/s10115-015-0912-x 10.1613/jair.3461 10.1109/21.52548 10.1109/TSMC.2019.2958846 10.1109/MCI.2018.2840727 10.1613/jair.1579 10.1109/TEVC.2016.2577593 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TETCI.2022.3229308 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2471-285X |
| EndPage | 14 |
| ExternalDocumentID | 10_1109_TETCI_2022_3229308 9999131 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: EPSRC New Investigator grantid: EP/S011609/1 – fundername: National Natural Science Foundation of China grantid: 61836005; 62176225; 62276168; 61875169 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE JAVBF OCL RIA RIE AAYXX CITATION EJD 7SP 8FD ABAZT L7M |
| ID | FETCH-LOGICAL-c295t-2f18276a37c918db5e5b3d22e12b5a0e6da618bfa1b35909f55a028a927ed7193 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000906230400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2471-285X |
| IngestDate | Sun Jun 29 16:54:45 EDT 2025 Sat Nov 29 05:12:08 EST 2025 Tue Nov 18 22:43:33 EST 2025 Tue Nov 25 14:44:25 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-2f18276a37c918db5e5b3d22e12b5a0e6da618bfa1b35909f55a028a927ed7193 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8424-4325 0000-0002-5246-403X |
| PQID | 2840389990 |
| PQPubID | 4437216 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TETCI_2022_3229308 ieee_primary_9999131 crossref_citationtrail_10_1109_TETCI_2022_3229308 proquest_journals_2840389990 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on emerging topics in computational intelligence |
| PublicationTitleAbbrev | TETCI |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 ref14 ref31 ref10 ref2 ref1 ref17 ref16 ref19 ref18 liu (ref23) 0 conroy (ref8) 0 wolfgang (ref11) 1998 ma (ref32) 0 karimpanal (ref30) 2021; 25 ref24 higham (ref29) 1996 ref26 ref25 ref20 ref21 pynadath (ref13) 0 ref28 ref27 ref7 ref9 ref4 ref3 silver (ref22) 2017; 550 ref6 ref5 |
| References_xml | – ident: ref10 doi: 10.1016/j.artint.2020.103292 – ident: ref25 doi: 10.1007/s12293-021-00343-8 – ident: ref15 doi: 10.1016/j.ins.2021.09.039 – start-page: 1911 year: 0 ident: ref32 article-title: Ev-IDID: Enhancing solutions to interactive dynamic influence diagrams through evolutionary algorithms publication-title: Proc 21st Int Conf Auton Agents Multiagent Syst – ident: ref21 doi: 10.24963/ijcai.2020/12 – ident: ref2 doi: 10.1613/jair.1.12889 – ident: ref3 doi: 10.1007/s10458-007-9026-5 – ident: ref14 doi: 10.1145/1160633.1160816 – ident: ref9 doi: 10.1016/j.artint.2019.103202 – volume: 25 start-page: 386 year: 2021 ident: ref30 article-title: Neuro-evolutionary frameworks for generalized learning agents publication-title: IEEE Trans Evol Comput – ident: ref5 doi: 10.1007/s10458-008-9064-7 – ident: ref17 doi: 10.1016/j.asoc.2018.06.050 – ident: ref28 doi: 10.1016/j.artint.2020.103431 – ident: ref27 doi: 10.1007/978-0-387-68282-2 – ident: ref24 doi: 10.1007/s10115-021-01600-5 – year: 1998 ident: ref11 publication-title: Genetic Programming An Introduction On the Automatic Evolution of Computer Programs and its Applications – start-page: 1162 year: 0 ident: ref8 article-title: A value equivalence approach for solving interactive dynamic influence diagrams publication-title: Proc 15th Int Conf Auton Agents Multiagent Syst – volume: 550 start-page: 354 year: 2017 ident: ref22 article-title: Mastering the game of go without human knowledge publication-title: Nature doi: 10.1038/nature24270 – year: 1996 ident: ref29 publication-title: Accuracy and Stability of Numerical Algorithms – ident: ref12 doi: 10.1609/aimag.v38i3.2756 – ident: ref31 doi: 10.1002/int.23075 – ident: ref16 doi: 10.1016/j.asoc.2005.01.003 – start-page: 52 year: 0 ident: ref23 article-title: Self-improving generative adversarial reinforcement learning publication-title: Proc 18th Int Conf Auton Agents MultiAgent Syst – ident: ref1 doi: 10.1016/j.artint.2018.01.002 – ident: ref7 doi: 10.1007/s10115-015-0912-x – ident: ref6 doi: 10.1613/jair.3461 – ident: ref26 doi: 10.1109/21.52548 – start-page: 1038 year: 0 ident: ref13 article-title: Minimal mental models publication-title: Proc 22nd AAAI Conf Artif Intell – ident: ref19 doi: 10.1109/TSMC.2019.2958846 – ident: ref20 doi: 10.1109/MCI.2018.2840727 – ident: ref4 doi: 10.1613/jair.1579 – ident: ref18 doi: 10.1109/TEVC.2016.2577593 |
| SSID | ssj0002951354 |
| Score | 2.241457 |
| Snippet | Multiagent decision making becomes complicated when a subject agent interacts with other agents who could be either collaborative or competitive in their... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Collaboration Computational modeling Decision making decision model Evolutionary behaviour genetic algorithm Genetic algorithms Heuristic algorithms intelligent agents Mathematical models Modelling Multi-agent systems Multiagent systems Planning Predictive models |
| Title | An Evolutionary Framework for Modelling Unknown Behaviours of Other Agents |
| URI | https://ieeexplore.ieee.org/document/9999131 https://www.proquest.com/docview/2840389990 |
| Volume | 7 |
| WOSCitedRecordID | wos000906230400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 2471-285X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002951354 issn: 2471-285X databaseCode: RIE dateStart: 20170101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4cGLH0xxOiUHb9qtST_SHIdsqMj0sMluJU1SEKQb7TbwvzdJ0yIogre2SaD55bX5vZf3AXAjaI4V4ZlnQtG8UFNmj_mEe4JKweM8CYU90X17prNZslyy1w7ctbEwSinrfKaG5tKe5cuV2BpT2YgZNmOCpvcojetYrdaeQjRVCKKwiYvx2Wg-md8_ag2QkKGWWhaYCpLf9h5bTOXHH9huK9Oj_73QMRw6-ojG9XqfQEcVPXgaF2iyczLEy080bTyukKakyJQ7s5m30aIwJrQCuaSI27JCqxy9GA6IxibGqjqFxVRP6MFzNRI8oWe88UiuFQQa84AKhhOZRSrKAkmIwiSLuK9iyWOcZDnHWRAxn-WRfkoSzghVkmr2dgbdYlWoc0AKM0mzgES6QetBOU9CiQOhOZ_QNxj3ATfopcIlEDd1LD5Sq0j4LLWIpwbx1CHeh9t2zLpOn_Fn757BuO3p4O3DoFmk1H1hVaq3VZsbkPkXv4-6hANTGr521htAd1Nu1RXsi93mvSqvrfB8ARjdwpM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jCnrxgylOp-bgTbs1adM0xyEbm87pYZPdQpqmIEgn6zbwvzdJ0yIogre2SaD55bX5vZf3AcCNpBlSWCSeCUXzQk2ZPeZj4UmaShFlcSjtie7rhE6n8WLBXhrgro6FUUpZ5zPVNZf2LD9dyo0xlfWYYTMmaHqHhCH2y2it2qKCNVkISFhFxvisNxvM7sdaB8S4q-WWBaaG5Lfdx5ZT-fEPthvL8PB_r3QEDhyBhP1yxY9BQ-Ut8NDP4WDrpEisPuGw8rmCmpRCU_DM5t6G89wY0XLo0iJuVgVcZvDZsEDYN1FWxQmYD_WERp6rkuBJPeO1hzOtItBIBFQyFKcJUSQJUowVwgkRvopSEaE4yQRKAsJ8lhH9FMeCYapSqvnbKWjmy1ydAagQS2kSYKIbtCaUiThMUSA165P6BqE2QBV6XLoU4qaSxTu3qoTPuEWcG8S5Q7wNbusxH2UCjT97twzGdU8Hbxt0qkXi7hsruN5YbXZA5p__Puoa7I1mTxM-GU8fL8C-KRRfuu51QHO92qhLsCu367didWUF6QtiwMXa |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Evolutionary+Framework+for+Modelling+Unknown+Behaviours+of+Other+Agents&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Pan%2C+Yinghui&rft.au=Ma%2C+Biyang&rft.au=Zeng%2C+Yifeng&rft.au=Tang%2C+Jing&rft.date=2023-08-01&rft.pub=IEEE&rft.eissn=2471-285X&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTETCI.2022.3229308&rft.externalDocID=9999131 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon |