Variable Kernel Width Algorithm of Generalized Maximum Correntropy Criteria for Censored Regression

The constant kernel width of generalized maximum correntropy criteria (GMCC) has arisen that the steady-state error and convergence speed can be mutually exclusive. To solve this problem, this brief proposes the variable kernel width (VKW) GMCC algorithm. Actually, due to the censored problem, the o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems. II, Express briefs Ročník 69; číslo 3; s. 1877 - 1881
Hlavní autoři: Zhao, Haiquan, Chen, Bing, Zhu, Yingying, He, Xiaoqiong, Shu, Zeliang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1549-7747, 1558-3791
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The constant kernel width of generalized maximum correntropy criteria (GMCC) has arisen that the steady-state error and convergence speed can be mutually exclusive. To solve this problem, this brief proposes the variable kernel width (VKW) GMCC algorithm. Actually, due to the censored problem, the output data value beyond the limit of the recording device can not be well observed. In this case, we further developed a variable kernel width GMCC algorithm based on censored regression (CR-VKWGMCC). Simulation results show that the proposed CR-VKWGMCC algorithm has excellent performance in both Gaussian and non Gaussian noise.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2021.3103504