Overview of Deep Learning-based CSI Feedback in Massive MIMO Systems

Many performance gains achieved by massive multiple-input and multiple-output depend on the accuracy of the downlink channel state information (CSI) at the transmitter (base station), which is usually obtained by estimating at the receiver (user equipment) and feeding back to the transmitter. The ov...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications Vol. 70; no. 12; p. 1
Main Authors: Guo, Jiajia, Wen, Chao-Kai, Jin, Shi, Li, Geoffrey Ye
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0090-6778, 1558-0857
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Many performance gains achieved by massive multiple-input and multiple-output depend on the accuracy of the downlink channel state information (CSI) at the transmitter (base station), which is usually obtained by estimating at the receiver (user equipment) and feeding back to the transmitter. The overhead of CSI feedback occupies substantial uplink bandwidth resources, especially when the number of transmit antennas is large. Deep learning (DL)-based CSI feedback refers to CSI compression and reconstruction by a DL-based autoencoder and can greatly reduce feedback overhead. In this paper, a comprehensive overview of state-of-the-art research on this topic is provided, beginning with basic DL concepts widely used in CSI feedback and then categorizing and describing some existing DL-based feedback works. The focus is on novel neural network architectures and utilization of communication expert knowledge to improve CSI feedback accuracy. Works on joint design of CSI feedback with other communication modules are also introduced, and some practical issues, including bitstream generation, multirate feedback, imperfect feedback, NN complexity, training dataset collection, online training, and standardization effect, are discussed. At the end of the paper, some challenges and potential research directions associated with DL-based CSI feedback in future wireless communication systems are identified.
AbstractList Many performance gains achieved by massive multiple-input and multiple-output depend on the accuracy of the downlink channel state information (CSI) at the transmitter (base station), which is usually obtained by estimating at the receiver (user equipment) and feeding back to the transmitter. The overhead of CSI feedback occupies substantial uplink bandwidth resources, especially when the number of transmit antennas is large. Deep learning (DL)-based CSI feedback refers to CSI compression and reconstruction by a DL-based autoencoder and can greatly reduce feedback overhead. In this paper, a comprehensive overview of state-of-the-art research on this topic is provided, beginning with basic DL concepts widely used in CSI feedback and then categorizing and describing some existing DL-based feedback works. The focus is on novel neural network architectures and utilization of communication expert knowledge to improve CSI feedback accuracy. Works on joint design of CSI feedback with other communication modules are also introduced, and some practical issues, including bitstream generation, multirate feedback, imperfect feedback, NN complexity, training dataset collection, online training, and standardization effect, are discussed. At the end of the paper, some challenges and potential research directions associated with DL-based CSI feedback in future wireless communication systems are identified.
Author Wen, Chao-Kai
Guo, Jiajia
Li, Geoffrey Ye
Jin, Shi
Author_xml – sequence: 1
  givenname: Jiajia
  orcidid: 0000-0002-6220-2295
  surname: Guo
  fullname: Guo, Jiajia
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, P. R. China
– sequence: 2
  givenname: Chao-Kai
  orcidid: 0000-0001-5952-232X
  surname: Wen
  fullname: Wen, Chao-Kai
  organization: Institute of Communications Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
– sequence: 3
  givenname: Shi
  orcidid: 0000-0003-0271-6021
  surname: Jin
  fullname: Jin, Shi
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, P. R. China
– sequence: 4
  givenname: Geoffrey Ye
  orcidid: 0000-0002-7894-2415
  surname: Li
  fullname: Li, Geoffrey Ye
  organization: Department of Electrical and Electronic Engineering, Imperial College London, London, U.K
BookMark eNp9kD1PwzAQhi1UJErhD8BiiTnFH3HsjCilUKlRhpbZcpILcmmTYqdF_fe4tGJg4Ja74X3uTs81GrRdCwjdUTKmlKSPy6zI8zEjjI05ozLUBRpSIVRElJADNCQkJVEipbpC196vCCEx4XyIJsUe3N7CF-4aPAHY4jkY19r2PSqNhxpnixmeAtSlqT6wbXFuvLd7wPksL_Di4HvY-Bt02Zi1h9tzH6G36fMye43mxcsse5pHFUtFHzHgRpVlJUoBcRgNiYVJyqrhJQfKKAhaE6UqmbC6SWrDJMQJQMiCoSSERujhtHfrus8d-F6vup1rw0nNpIhTkciUhZQ6pSrXee-g0ZXtTW-7tnfGrjUl-uhM_zjTR2f67Cyg7A-6dXZj3OF_6P4E2fDrL5CmnErK-TfUyHi6
CODEN IECMBT
CitedBy_id crossref_primary_10_1109_COMST_2023_3315374
crossref_primary_10_1109_TWC_2024_3354238
crossref_primary_10_1109_LWC_2024_3482863
crossref_primary_10_3390_math13152371
crossref_primary_10_1109_TWC_2024_3381211
crossref_primary_10_1109_LWC_2024_3518586
crossref_primary_10_1109_LWC_2024_3511553
crossref_primary_10_3390_s24185977
crossref_primary_10_1109_JSAC_2025_3559128
crossref_primary_10_1016_j_phycom_2024_102516
crossref_primary_10_1007_s11277_025_11767_7
crossref_primary_10_1109_MWC_010_2400078
crossref_primary_10_1109_ACCESS_2024_3457805
crossref_primary_10_1007_s12243_025_01113_0
crossref_primary_10_1109_JIOT_2024_3397302
crossref_primary_10_1109_TCCN_2023_3322983
crossref_primary_10_1109_TCOMM_2024_3524028
crossref_primary_10_1016_j_eswa_2024_125985
crossref_primary_10_1109_LWC_2024_3372148
crossref_primary_10_1016_j_phycom_2025_102756
crossref_primary_10_1109_TVT_2024_3502840
crossref_primary_10_1109_TWC_2025_3531447
crossref_primary_10_1145_3705893
crossref_primary_10_1109_JPROC_2024_3437730
crossref_primary_10_1109_LWC_2024_3367968
crossref_primary_10_1109_TCOMM_2025_3534528
crossref_primary_10_1109_TWC_2023_3329945
crossref_primary_10_1109_TCOMM_2024_3416889
crossref_primary_10_1109_TWC_2024_3400616
crossref_primary_10_1360_SSI_2024_0210
crossref_primary_10_1109_COMST_2024_3361991
crossref_primary_10_12688_f1000research_169843_1
crossref_primary_10_1109_LWC_2025_3574011
crossref_primary_10_1109_TWC_2025_3561786
crossref_primary_10_1109_TSP_2024_3423660
crossref_primary_10_1109_LWC_2025_3570965
crossref_primary_10_1109_TCCN_2024_3394867
crossref_primary_10_1109_TCCN_2023_3306391
crossref_primary_10_1109_TCOMM_2024_3384256
crossref_primary_10_1109_LCOMM_2024_3424434
crossref_primary_10_1109_TVT_2024_3461830
crossref_primary_10_1109_TCOMM_2024_3377724
crossref_primary_10_1109_TWC_2024_3490600
crossref_primary_10_1109_TCOMM_2023_3317924
crossref_primary_10_1109_JIOT_2025_3585120
crossref_primary_10_1109_TWC_2024_3481054
crossref_primary_10_1007_s10791_025_09542_0
crossref_primary_10_1109_LWC_2023_3329019
crossref_primary_10_1109_TWC_2024_3426525
crossref_primary_10_1109_LWC_2022_3227315
crossref_primary_10_3390_rs16020247
crossref_primary_10_1109_LWC_2024_3469383
crossref_primary_10_1109_LCOMM_2023_3267461
crossref_primary_10_1109_TWC_2024_3418907
crossref_primary_10_1109_TWC_2025_3560231
crossref_primary_10_1109_LCOMM_2023_3258749
crossref_primary_10_1109_LNET_2024_3475269
crossref_primary_10_1109_TCCN_2024_3435915
crossref_primary_10_1109_TWC_2024_3440275
crossref_primary_10_1016_j_sigpro_2025_110192
crossref_primary_10_1016_j_phycom_2025_102682
crossref_primary_10_1109_LWC_2023_3301992
crossref_primary_10_1109_TWC_2025_3529945
crossref_primary_10_1109_TWC_2024_3476474
crossref_primary_10_1109_TWC_2024_3400826
crossref_primary_10_1109_JIOT_2024_3430894
crossref_primary_10_1109_JSAC_2025_3559165
crossref_primary_10_1109_TCOMM_2023_3241326
crossref_primary_10_1109_LWC_2024_3395843
crossref_primary_10_1109_TVT_2024_3493463
crossref_primary_10_1109_TWC_2023_3339824
crossref_primary_10_1109_TWC_2024_3376633
crossref_primary_10_1109_TMC_2024_3495719
crossref_primary_10_1109_TWC_2023_3275990
crossref_primary_10_1109_LWC_2023_3324981
crossref_primary_10_1109_TWC_2024_3422399
crossref_primary_10_1109_LWC_2024_3407813
crossref_primary_10_1109_LWC_2024_3411065
crossref_primary_10_3390_electronics13020268
crossref_primary_10_1109_TVT_2024_3452409
crossref_primary_10_1109_JSEN_2024_3377911
crossref_primary_10_1016_j_phycom_2024_102305
crossref_primary_10_1109_LWC_2024_3400279
crossref_primary_10_1109_TMC_2024_3407792
crossref_primary_10_1109_TVT_2022_3226220
crossref_primary_10_1016_j_phycom_2024_102538
crossref_primary_10_1109_MWC_010_2200304
crossref_primary_10_1109_TWC_2023_3342735
crossref_primary_10_1109_TWC_2025_3545372
crossref_primary_10_3103_S0278641925700153
crossref_primary_10_1109_TWC_2023_3327984
crossref_primary_10_3390_s23104929
crossref_primary_10_1109_TVT_2023_3345938
crossref_primary_10_1016_j_eng_2025_07_032
crossref_primary_10_1109_TWC_2024_3428863
crossref_primary_10_1016_j_compeleceng_2025_110406
crossref_primary_10_1109_TWC_2024_3452438
crossref_primary_10_1049_ell2_12854
crossref_primary_10_1109_TWC_2023_3289929
crossref_primary_10_1007_s42979_025_04290_w
crossref_primary_10_1109_TCOMM_2024_3429170
crossref_primary_10_3390_app14041356
Cites_doi 10.1109/CVPR.2018.00716
10.1109/TCOMM.2021.3138097
10.1007/s41745-020-00169-2
10.23919/JCC.2021.11.008
10.1109/TVT.2020.3004842
10.1049/ell2.12080
10.1016/j.patcog.2019.01.006
10.1109/18.382009
10.23919/JCIN.2020.9200894
10.1109/LWC.2021.3083331
10.4236/jcc.2021.910009
10.1109/LCOMM.2021.3076504
10.1109/MCOMSTD.0001.2200001
10.1109/TSP.2010.2090346
10.3390/e24040441
10.1109/ACCESS.2018.2850226
10.1109/TIT.2006.883550
10.1109/TWC.2020.2968430
10.1109/LCOMM.2020.2981448
10.23919/JCC.2022.08.002
10.1109/LWC.2020.2964550
10.23915/distill.00021
10.1109/26.380120
10.1109/SPAWC.2018.8446005
10.1109/TWC.2022.3182216
10.1109/LWC.2021.3118923
10.1109/TIT.2007.909170
10.1109/MWC.011.2100016
10.1109/MCOM.001.2001187
10.1109/JSAC.2017.2692307
10.1109/JSAC.2020.3041397
10.1109/TCOMM.2019.2960361
10.1109/TWC.2021.3073309
10.1109/TWC.2021.3103120
10.1109/LWC.2022.3149416
10.1109/LWC.2019.2942908
10.1109/MWC.001.1900157
10.1109/TCOMM.2021.3086525
10.1109/LCOMM.2018.2882829
10.1109/ISCEIC53685.2021.00056
10.1109/VTC2021-Fall52928.2021.9625047
10.1109/ICNP49622.2020.9259366
10.1109/LWC.2021.3099136
10.1109/MCOMSTD.001.1800036
10.1109/LWC.2021.3064963
10.1109/TCOMM.2020.2993626
10.1109/CVPR42600.2020.01009
10.1109/JSTSP.2017.2784180
10.1109/JCN.2020.000016
10.1109/CC.2017.8233654
10.1109/CVPR52688.2022.01166
10.1109/TCCN.2021.3119945
10.1109/JSAC.2008.081002
10.1109/LWC.2021.3100493
10.1109/TWC.2022.3149946
10.1137/080716542
10.1109/JIOT.2021.3139958
10.1109/SPAWC51858.2021.9593238
10.1109/GLOBECOM46510.2021.9685912
10.1109/MWC.2019.1800601
10.1109/MWC.006.2100543
10.1162/neco.1997.9.8.1735
10.1109/TSP.2014.2324991
10.1109/TCCN.2021.3084409
10.1109/ACCESS.2019.2901066
10.1109/LWC.2021.3117032
10.1109/LWC.2018.2818160
10.1109/WCNC49053.2021.9417115
10.1109/LWC.2019.2962114
10.1109/LCOMM.2020.2989499
10.1109/LWC.2021.3085317
10.1109/CVPR.2016.90
10.1109/TPAMI.2017.2699184
10.1109/ACCESS.2020.2963896
10.1109/LWC.2017.2757490
10.1109/WOCC53213.2021.9602863
10.1109/GLOBECOM42002.2020.9322121
10.1109/TCOMM.2021.3120294
10.1109/GlobalSIP45357.2019.8969557
10.1109/JSTSP.2022.3160268
10.1109/MWC.010.2200304
10.1109/ACCESS.2019.2928049
10.1109/LCOMM.2022.3185308
10.1109/LWC.2018.2874264
10.1109/CVPR.2017.243
10.1109/TVT.2022.3183596
10.1109/LWC.2021.3112747
10.1109/MWC.2019.1800447
10.1109/MSP.2018.2789521
10.1109/LWC.2021.3092947
10.1109/LWC.2021.3140102
10.1109/ICCV.2019.00200
10.1109/WCSP52459.2021.9613524
10.1109/MWC.2021.9363048
10.1109/LCOMM.2007.061534
10.1109/TVT.2021.3110608
10.1088/1742-6596/1693/1/012173
10.1109/TWC.2020.2970707
10.1109/MWC.001.2100136
10.1109/TWC.2022.3141653
10.1109/LCOMM.2021.3116864
10.1049/iet-com.2019.1030
10.1109/MWC.001.1900473
10.1109/TWC.2021.3055202
10.1109/ICC40277.2020.9149229
10.1109/MLSP.2019.8918798
10.1109/TIT.2005.858979
10.1109/LCOMM.2020.3017188
10.1109/VTC2021-Fall52928.2021.9625585
10.1109/LWC.2022.3216352
10.1109/LCOMM.2018.2877965
10.1109/LWC.2020.3017753
10.1109/MWC.2012.6393523
10.1109/WCNC49053.2021.9417500
10.1109/TWC.2021.3087191
10.1109/LWC.2022.3153085
10.1109/LCOMM.2022.3145099
10.1109/LCOMM.2021.3138927
10.1109/LWC.2022.3157263
10.1109/LWC.2021.3122462
10.1109/TCOMM.2020.3019077
10.1109/TVT.2021.3131606
10.1109/ACCESS.2022.3208284
10.1109/ACCESS.2019.2939938
10.1109/LWC.2021.3096808
10.1109/TCOMM.2022.3180388
10.1109/MSP.2008.930649
10.1109/JSTSP.2014.2317671
10.1109/WCNC.2019.8885897
10.1109/LWC.2021.3057934
10.1109/ACCESS.2022.3194035
10.1109/LWC.2019.2898662
10.1109/23.589532
10.1109/ICASSP40776.2020.9053850
10.1016/j.crma.2008.03.014
10.1109/BigData47090.2019.9006216
10.1109/TWC.2020.3043502
10.23919/JCC.2021.01.004
10.1109/LWC.2019.2895039
10.1109/TWC.2022.3160498
10.1109/LCOMM.2021.3099841
10.1109/TVT.2020.2980905
10.1109/LCOMM.2020.3019653
10.1109/TCSVT.2003.815173
10.1109/LCOMM.2021.3123941
10.1109/TCCN.2017.2758370
10.1016/j.dcan.2021.09.014
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCOMM.2022.3217777
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0857
EndPage 1
ExternalDocumentID 10_1109_TCOMM_2022_3217777
9931713
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYXX
CITATION
7SP
8FD
AARMG
ABAZT
L7M
ID FETCH-LOGICAL-c295t-2e3a8bbc5b5e43a8a045a6bcf3b3e121e51d088c762df6da27e46eee43ea103b3
IEDL.DBID RIE
ISICitedReferencesCount 141
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000927591900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0090-6778
IngestDate Mon Jun 30 10:12:09 EDT 2025
Tue Nov 18 22:24:34 EST 2025
Sat Nov 29 04:08:25 EST 2025
Tue Nov 25 14:44:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-2e3a8bbc5b5e43a8a045a6bcf3b3e121e51d088c762df6da27e46eee43ea103b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6220-2295
0000-0003-0271-6021
0000-0001-5952-232X
0000-0002-7894-2415
PQID 2754956792
PQPubID 85472
PageCount 1
ParticipantIDs proquest_journals_2754956792
crossref_citationtrail_10_1109_TCOMM_2022_3217777
crossref_primary_10_1109_TCOMM_2022_3217777
ieee_primary_9931713
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References (ref182) 2022
ref57
(ref23) 2022
ref56
ref59
ref58
ref53
ref52
ref55
ref169
ref54
zhang (ref141) 2022
olah (ref33) 2015
rao (ref20) 2014; 62
ref170
ref177
(ref147) 1988
ref178
ref175
ref51
ref174
ref171
ref46
ref45
ref48
ref47
ref42
ref179
ref44
woo (ref38) 2018
ref49
xu (ref153) 2022
ref180
ref8
ref181
ref7
guo (ref109) 2022
ref9
ref4
ref3
ref6
ref5
ref100
abadi (ref82) 2016
ref101
kingma (ref36) 2013
ref34
ref31
ref148
ref30
ref146
ref32
hong (ref92) 2021; 2021
hinton (ref150) 2015
yu (ref173) 2019
ref156
staudemeyer (ref35) 2019
ref154
ref151
paszke (ref83) 2019; 32
ref152
goodfellow (ref37) 2014; 27
ref26
ref25
ref159
ref22
ref157
ref21
ref158
ref28
ref27
jiang (ref136) 2021
ref29
wang (ref94) 2019
bahdanau (ref40) 2015
ref166
ref167
ref164
shlezinger (ref86) 2020
ref165
ref162
ref163
ref160
ref161
li (ref168) 2022
ref13
ref12
ref128
ref15
ref129
ref14
ref126
ref127
ref96
ref124
ref99
ref11
ref125
ref98
ref10
ballé (ref149) 2018
ref17
ref16
ref19
ref18
campbell (ref176) 2018
ref133
ref93
ref134
ref131
ref95
ref132
ref130
ref91
ref90
ref89
ref139
ref137
iandola (ref155) 2016
ref138
ref85
(ref24) 2021
ref135
gregor (ref87) 2010
ref144
ref145
ref81
ref142
ref84
ref143
ref140
ref80
ref79
ref108
ref78
vaswani (ref39) 2017; 30
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ahmed (ref172) 2019
ref71
ref111
ref70
ref112
ref73
ref72
ha (ref106) 2016
ref110
latva-aho (ref107) 2020
guo (ref97) 2020
shih (ref43) 2018
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
xu (ref41) 2015
hussien (ref50) 2020
ref60
ref122
ref123
ref62
ref120
ref61
ref121
liu (ref88) 2019
References_xml – ident: ref156
  doi: 10.1109/CVPR.2018.00716
– start-page: 1
  year: 2015
  ident: ref40
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: Proc ICLR
– ident: ref139
  doi: 10.1109/TCOMM.2021.3138097
– ident: ref118
  doi: 10.1007/s41745-020-00169-2
– ident: ref151
  doi: 10.23919/JCC.2021.11.008
– ident: ref65
  doi: 10.1109/TVT.2020.3004842
– ident: ref72
  doi: 10.1049/ell2.12080
– ident: ref30
  doi: 10.1016/j.patcog.2019.01.006
– ident: ref89
  doi: 10.1109/18.382009
– ident: ref152
  doi: 10.23919/JCIN.2020.9200894
– ident: ref53
  doi: 10.1109/LWC.2021.3083331
– ident: ref67
  doi: 10.4236/jcc.2021.910009
– ident: ref154
  doi: 10.1109/LCOMM.2021.3076504
– ident: ref5
  doi: 10.1109/MCOMSTD.0001.2200001
– ident: ref145
  doi: 10.1109/TSP.2010.2090346
– ident: ref113
  doi: 10.3390/e24040441
– ident: ref11
  doi: 10.1109/ACCESS.2018.2850226
– ident: ref26
  doi: 10.1109/TIT.2006.883550
– ident: ref44
  doi: 10.1109/TWC.2020.2968430
– year: 2018
  ident: ref43
  publication-title: Study on Massive MIMO CSI Feedback Based on Deep Learning
– ident: ref74
  doi: 10.1109/LCOMM.2020.2981448
– ident: ref159
  doi: 10.23919/JCC.2022.08.002
– ident: ref102
  doi: 10.1109/LWC.2020.2964550
– ident: ref31
  doi: 10.23915/distill.00021
– ident: ref100
  doi: 10.1109/26.380120
– ident: ref133
  doi: 10.1109/SPAWC.2018.8446005
– ident: ref125
  doi: 10.1109/TWC.2022.3182216
– ident: ref128
  doi: 10.1109/LWC.2021.3118923
– ident: ref144
  doi: 10.1109/TIT.2007.909170
– year: 2013
  ident: ref36
  article-title: Auto-encoding variational Bayes
  publication-title: arXiv 1312 6114
– ident: ref179
  doi: 10.1109/MWC.011.2100016
– ident: ref6
  doi: 10.1109/MCOM.001.2001187
– ident: ref2
  doi: 10.1109/JSAC.2017.2692307
– ident: ref112
  doi: 10.1109/JSAC.2020.3041397
– ident: ref12
  doi: 10.1109/TCOMM.2019.2960361
– start-page: 1
  year: 2019
  ident: ref172
  article-title: DeepMIMO: A generic deep learning dataset for millimeter wave and massive MIMO applications
  publication-title: Proc Inf Theory Appl Workshop (ITA)
– year: 2020
  ident: ref86
  article-title: Model-based deep learning
  publication-title: arXiv 2012 08405
– ident: ref120
  doi: 10.1109/TWC.2021.3073309
– year: 2016
  ident: ref155
  article-title: SqueezeNet: AlexNet-level accuracy with 50X fewer parameters and <0.5 MB model size
  publication-title: arXiv 1602 07360
– ident: ref101
  doi: 10.1109/TWC.2021.3103120
– start-page: 3
  year: 2018
  ident: ref38
  article-title: CBAM: Convolutional block attention module
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref59
  doi: 10.1109/LWC.2022.3149416
– start-page: 698
  year: 2018
  ident: ref176
  article-title: Bayesian coreset construction via greedy iterative geodesic ascent
  publication-title: Proc ICML
– ident: ref121
  doi: 10.1109/LWC.2019.2942908
– ident: ref180
  doi: 10.1109/MWC.001.1900157
– ident: ref96
  doi: 10.1109/TCOMM.2021.3086525
– ident: ref91
  doi: 10.1109/LCOMM.2018.2882829
– ident: ref103
  doi: 10.1109/ISCEIC53685.2021.00056
– ident: ref132
  doi: 10.1109/VTC2021-Fall52928.2021.9625047
– year: 2016
  ident: ref106
  article-title: HyperNetworks
  publication-title: arXiv 1609 09106
– ident: ref166
  doi: 10.1109/ICNP49622.2020.9259366
– ident: ref160
  doi: 10.1109/LWC.2021.3099136
– start-page: 1
  year: 2019
  ident: ref173
  article-title: Slimmable neural networks
  publication-title: Proc ICLR
– ident: ref1
  doi: 10.1109/MCOMSTD.001.1800036
– ident: ref66
  doi: 10.1109/LWC.2021.3064963
– ident: ref105
  doi: 10.1109/TCOMM.2020.2993626
– start-page: 2048
  year: 2015
  ident: ref41
  article-title: Show, attend and tell: Neural image caption generation with visual attention
  publication-title: Proc ICML
– ident: ref80
  doi: 10.1109/CVPR42600.2020.01009
– ident: ref18
  doi: 10.1109/JSTSP.2017.2784180
– start-page: 1
  year: 2018
  ident: ref149
  article-title: Variational image compression with a scale hyperprior
  publication-title: Proc ICLR
– ident: ref165
  doi: 10.1109/JCN.2020.000016
– volume: 2021
  start-page: 1
  year: 2021
  ident: ref92
  article-title: Machine learning-based adaptive CSI feedback interval
  publication-title: ICT Exp
– year: 2022
  ident: ref168
  article-title: Multi-task learning-based CSI feedback design in multiple scenarios
  publication-title: arXiv 2204 12698
– ident: ref8
  doi: 10.1109/CC.2017.8233654
– start-page: 1198
  year: 2021
  ident: ref136
  article-title: Federated learning-based codebook design for massive MIMO communication system
  publication-title: Proc Int Conf Natural Comput Fuzzy Syst Knowl Discovery
– ident: ref32
  doi: 10.1109/CVPR52688.2022.01166
– volume: 32
  start-page: 1
  year: 2019
  ident: ref83
  article-title: PyTorch: An imperative style, high-performance deep learning library
  publication-title: Proc NeurIPS
– ident: ref69
  doi: 10.1109/TCCN.2021.3119945
– ident: ref21
  doi: 10.1109/JSAC.2008.081002
– year: 2020
  ident: ref107
  publication-title: Key drivers and research challenges for 6G ubiquitous wireless intelligence
– ident: ref52
  doi: 10.1109/LWC.2021.3100493
– ident: ref171
  doi: 10.1109/TWC.2022.3149946
– ident: ref29
  doi: 10.1137/080716542
– ident: ref169
  doi: 10.1109/JIOT.2021.3139958
– ident: ref95
  doi: 10.1109/SPAWC51858.2021.9593238
– ident: ref123
  doi: 10.1109/GLOBECOM46510.2021.9685912
– ident: ref7
  doi: 10.1109/MWC.2019.1800601
– volume: 27
  start-page: 139
  year: 2014
  ident: ref37
  article-title: Generative adversarial nets
  publication-title: Proc 28th Adv Neural Inf Process Syst (NIPS)
– ident: ref174
  doi: 10.1109/MWC.006.2100543
– ident: ref34
  doi: 10.1162/neco.1997.9.8.1735
– volume: 62
  start-page: 3261
  year: 2014
  ident: ref20
  article-title: Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2014.2324991
– ident: ref135
  doi: 10.1109/TCCN.2021.3084409
– ident: ref178
  doi: 10.1109/ACCESS.2019.2901066
– ident: ref126
  doi: 10.1109/LWC.2021.3117032
– ident: ref25
  doi: 10.1109/LWC.2018.2818160
– ident: ref124
  doi: 10.1109/WCNC49053.2021.9417115
– ident: ref115
  doi: 10.1109/LWC.2019.2962114
– ident: ref127
  doi: 10.1109/LCOMM.2020.2989499
– ident: ref70
  doi: 10.1109/LWC.2021.3085317
– ident: ref76
  doi: 10.1109/CVPR.2016.90
– start-page: 265
  year: 2016
  ident: ref82
  article-title: TensorFlow: A system for large-scale machine learning
  publication-title: Proc 12th OSDI
– start-page: 1
  year: 2019
  ident: ref88
  article-title: ALISTA: Analytic weights are as good as learned weights in LISTA
  publication-title: Proc ICLR
– ident: ref157
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref47
  doi: 10.1109/ACCESS.2020.2963896
– ident: ref13
  doi: 10.1109/LWC.2017.2757490
– ident: ref71
  doi: 10.1109/WOCC53213.2021.9602863
– ident: ref114
  doi: 10.1109/GLOBECOM42002.2020.9322121
– year: 2022
  ident: ref182
  publication-title: Wireless Intelligence
– year: 1988
  ident: ref147
  publication-title: Pulse Code Modulation (PCM) of Voice Frequencies
– ident: ref111
  doi: 10.1109/TCOMM.2021.3120294
– ident: ref122
  doi: 10.1109/GlobalSIP45357.2019.8969557
– year: 2022
  ident: ref109
  article-title: Deep learning for joint channel estimation and feedback in massive MIMO systems
  publication-title: arXiv 2011 07242
– ident: ref137
  doi: 10.1109/JSTSP.2022.3160268
– ident: ref177
  doi: 10.1109/MWC.010.2200304
– ident: ref162
  doi: 10.1109/ACCESS.2019.2928049
– ident: ref138
  doi: 10.1109/LCOMM.2022.3185308
– ident: ref90
  doi: 10.1109/LWC.2018.2874264
– ident: ref81
  doi: 10.1109/CVPR.2017.243
– ident: ref54
  doi: 10.1109/TVT.2022.3183596
– ident: ref140
  doi: 10.1109/LWC.2021.3112747
– ident: ref85
  doi: 10.1109/MWC.2019.1800447
– ident: ref22
  doi: 10.1109/MSP.2018.2789521
– ident: ref55
  doi: 10.1109/LWC.2021.3092947
– ident: ref175
  doi: 10.1109/LWC.2021.3140102
– ident: ref77
  doi: 10.1109/ICCV.2019.00200
– ident: ref58
  doi: 10.1109/WCSP52459.2021.9613524
– year: 2019
  ident: ref35
  article-title: Understanding LSTM-A tutorial into long short-term memory recurrent neural networks
  publication-title: arXiv 1909 09586
– ident: ref4
  doi: 10.1109/MWC.2021.9363048
– ident: ref163
  doi: 10.1109/LCOMM.2007.061534
– ident: ref116
  doi: 10.1109/TVT.2021.3110608
– year: 2021
  ident: ref24
  publication-title: New SI Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface
– ident: ref42
  doi: 10.1088/1742-6596/1693/1/012173
– ident: ref17
  doi: 10.1109/TWC.2020.2970707
– year: 2022
  ident: ref153
  article-title: Deep joint source-channel coding for CSI feedback: An end-to-end approach
  publication-title: arXiv 2203 16005
– ident: ref181
  doi: 10.1109/MWC.001.2100136
– ident: ref131
  doi: 10.1109/TWC.2022.3141653
– ident: ref57
  doi: 10.1109/LCOMM.2021.3116864
– ident: ref78
  doi: 10.1049/iet-com.2019.1030
– ident: ref130
  doi: 10.1109/MWC.001.1900473
– year: 2019
  ident: ref94
  publication-title: Research on key technology of massive MIMO channel feedback for intelligent communications
– volume: 30
  start-page: 1
  year: 2017
  ident: ref39
  article-title: Attention is all you need
  publication-title: Proc 31st Adv Neural Inf Process Syst (NIPS)
– ident: ref117
  doi: 10.1109/TWC.2021.3055202
– ident: ref46
  doi: 10.1109/ICC40277.2020.9149229
– ident: ref68
  doi: 10.1109/MLSP.2019.8918798
– ident: ref27
  doi: 10.1109/TIT.2005.858979
– ident: ref49
  doi: 10.1109/LCOMM.2020.3017188
– ident: ref64
  doi: 10.1109/VTC2021-Fall52928.2021.9625585
– ident: ref63
  doi: 10.1109/LWC.2022.3216352
– ident: ref14
  doi: 10.1109/LCOMM.2018.2877965
– ident: ref110
  doi: 10.1109/LWC.2020.3017753
– ident: ref170
  doi: 10.1109/MWC.2012.6393523
– ident: ref134
  doi: 10.1109/WCNC49053.2021.9417500
– ident: ref15
  doi: 10.1109/TWC.2021.3087191
– ident: ref60
  doi: 10.1109/LWC.2022.3153085
– ident: ref164
  doi: 10.1109/LCOMM.2022.3145099
– ident: ref75
  doi: 10.1109/LCOMM.2021.3138927
– year: 2022
  ident: ref141
  article-title: Attention mechanism based intelligent channel feedback for mmWave massive MIMO systems
  publication-title: arXiv 2208 06570
– ident: ref61
  doi: 10.1109/LWC.2022.3157263
– ident: ref73
  doi: 10.1109/LWC.2021.3122462
– year: 2022
  ident: ref23
  publication-title: Release 17 Description Summary of Rel-17 Work Items (v1 0 0)
– ident: ref158
  doi: 10.1109/TCOMM.2020.3019077
– ident: ref108
  doi: 10.1109/TVT.2021.3131606
– year: 2020
  ident: ref97
  article-title: DL-based CSI feedback and cooperative recovery in massive MIMO
  publication-title: arXiv 2003 03303
– ident: ref10
  doi: 10.1109/ACCESS.2022.3208284
– ident: ref3
  doi: 10.1109/ACCESS.2019.2939938
– ident: ref104
  doi: 10.1109/LWC.2021.3096808
– ident: ref142
  doi: 10.1109/TCOMM.2022.3180388
– ident: ref143
  doi: 10.1109/MSP.2008.930649
– ident: ref19
  doi: 10.1109/JSTSP.2014.2317671
– ident: ref45
  doi: 10.1109/WCNC.2019.8885897
– ident: ref79
  doi: 10.1109/LWC.2021.3057934
– ident: ref62
  doi: 10.1109/ACCESS.2022.3194035
– ident: ref93
  doi: 10.1109/LWC.2019.2898662
– ident: ref84
  doi: 10.1109/23.589532
– ident: ref129
  doi: 10.1109/ICASSP40776.2020.9053850
– year: 2020
  ident: ref50
  article-title: PRVNet: A novel partially-regularized variational autoencoders for massive MIMO CSI feedback
  publication-title: arXiv 2011 04178 [cs]
– ident: ref28
  doi: 10.1016/j.crma.2008.03.014
– ident: ref161
  doi: 10.1109/BigData47090.2019.9006216
– start-page: 1
  year: 2015
  ident: ref150
  article-title: Distilling the knowledge in a neural network
  publication-title: Proc Adv Neural Inf Process Syst Workshops (NIPSW)
– ident: ref98
  doi: 10.1109/TWC.2020.3043502
– year: 2015
  ident: ref33
  publication-title: Understanding LSTM Networks
– ident: ref51
  doi: 10.23919/JCC.2021.01.004
– ident: ref146
  doi: 10.1109/LWC.2019.2895039
– ident: ref99
  doi: 10.1109/TWC.2022.3160498
– ident: ref56
  doi: 10.1109/LCOMM.2021.3099841
– ident: ref119
  doi: 10.1109/TVT.2020.2980905
– ident: ref48
  doi: 10.1109/LCOMM.2020.3019653
– start-page: 399
  year: 2010
  ident: ref87
  article-title: Learning fast approximations of sparse coding
  publication-title: Proc 27th Int Conf Mach Learn
– ident: ref148
  doi: 10.1109/TCSVT.2003.815173
– ident: ref167
  doi: 10.1109/LCOMM.2021.3123941
– ident: ref16
  doi: 10.1109/TCCN.2017.2758370
– ident: ref9
  doi: 10.1016/j.dcan.2021.09.014
SSID ssj0004033
Score 2.714227
Snippet Many performance gains achieved by massive multiple-input and multiple-output depend on the accuracy of the downlink channel state information (CSI) at the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 3GPP
Communication
Computer architecture
CSI feedback
Decoding
Deep learning
Downlink
Feedback
Image coding
Image reconstruction
Indexes
Massive MIMO
Neural networks
overview
State-of-the-art reviews
Training
Wireless communication systems
Title Overview of Deep Learning-based CSI Feedback in Massive MIMO Systems
URI https://ieeexplore.ieee.org/document/9931713
https://www.proquest.com/docview/2754956792
Volume 70
WOSCitedRecordID wos000927591900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-0857
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004033
  issn: 0090-6778
  databaseCode: RIE
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKxQADr4IoFOSBDdImjp3HiFoqOqRFokjdItu5IARKq774-5xTt4BASGTycI6Sz_E9nLvvCLnCeFqY3icO2sLI4Zp7TiTNSRw69wr9fcPxXTabCPv9aDSKHyrkZlMLAwBl8hk0zbD8l5-N9cIclbXQlnqhaVG7FYbBqlbrswbS9S3jpElnD6N1gYwbt4btQZJgKMhY00cPHK9vRqjsqvJDFZf2pbv_vyc7IHvWj6S3q4U_JBUojsjuF3bBGukMlkYRwDsd57QDMKGWTPXZMbYro-3HHu2i9VJSv9KXgiboSKPyo0kvGVBLZX5Mnrp3w_a9Y5smOJrFYu4w8GWklBZKAMehRJ9NBkrnvvLBYx4IL0PNolEJZnmQSRYCD_B9uA_Sc1HohFSLcQGnhIKbMS5UkJtNK3mkuIZci4xrFAwgqBNvjWKqLaO4aWzxlpaRhRunJfKpQT61yNfJ9WbOZMWn8ad0zWC9kbQw10ljvVip3XKzlIXCBHthzM5-n3VOdsy9V7koDVKdTxdwQbb1cv4ym16WX9MHTlzD-g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6KCurBVxXrcw_eNJpsdvM4Smux2LSCFbyF7GYiRWlF2_r3nU23VVEEc9rDLEm-zc5jM_MNwAnF09L0PnHIFkaO0MJzosycxJFzr8jfNxzfZbOJsNOJHh7i2wqczWthELFMPsNzMyz_5edDPTZHZRdkS73QtKhdlEJwd1qt9VkF6fqWc9IktIfRrETGjS969W6SUDDI-blPPjhd38xQ2VflhzIuLUxz_X_PtgFr1pNkl9Ol34QKDrZg9Qu_YBUa3YlRBfjOhgVrIL4wS6f66BjrlbP6XYs1yX6pTD-x_oAl5EqT-mNJK-kyS2a-DffNq1792rFtExzNYzlyOPpZpJSWSqKgYUZeWxYoXfjKR497KL2cdIsmNZgXQZ7xEEVA7yN8zDyXhHZgYTAc4C4wdHMupAoKs20zESmhsdAyF5oEAwxq4M1QTLXlFDetLZ7TMrZw47REPjXIpxb5GpzO57xMGTX-lK4arOeSFuYaHMwWK7Wb7i3loTThXhjzvd9nHcPydS9pp-1W52YfVsx9ppkpB7Aweh3jISzpyaj_9npUflkfq_THQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overview+of+Deep+Learning-Based+CSI+Feedback+in+Massive+MIMO+Systems&rft.jtitle=IEEE+transactions+on+communications&rft.au=Guo%2C+Jiajia&rft.au=Chao-Kai%2C+Wen&rft.au=Shi%2C+Jin&rft.au=Geoffrey+Ye+Li&rft.date=2022-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=70&rft.issue=12&rft.spage=8017&rft_id=info:doi/10.1109%2FTCOMM.2022.3217777&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon