Optimal Resource Allocation to Enhance Power Grid Resilience Against Hurricanes

Optimal resource allocation is critical when maximizing the resilience of the electrical power distribution network against natural disasters. This paper presents a two-step optimization strategy that integrates a pre-disaster preparedness plan and a post-disaster resource re-allocation procedure to...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems Vol. 38; no. 3; pp. 2621 - 2629
Main Authors: Yang, Zejun, Marti, Andrea, Chen, Ying, Marti, Jose R.
Format: Journal Article
Language:English
Published: New York IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0885-8950, 1558-0679
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Optimal resource allocation is critical when maximizing the resilience of the electrical power distribution network against natural disasters. This paper presents a two-step optimization strategy that integrates a pre-disaster preparedness plan and a post-disaster resource re-allocation procedure to optimize the resilience of the power distribution network against hurricanes. Emergency resources are operationally interdependent, and it is these interdependencies that determine how the resources should be distributed to the critical loads in the network. This work uses the concept of the Human Readable Table (HRT) to relate the interdependencies among these resources. The resource allocation optimization is then formulated into a Mixed-Integer Nonlinear Programming (MINP) problem. The proposed method is tested on the IEEE 70-node system. The results show that this two-step procedure decreases the probability of failure for the critical nodes during the pre-hurricane stage and increases the system's ability to recover during the post-hurricane stage.
AbstractList Optimal resource allocation is critical when maximizing the resilience of the electrical power distribution network against natural disasters. This paper presents a two-step optimization strategy that integrates a pre-disaster preparedness plan and a post-disaster resource re-allocation procedure to optimize the resilience of the power distribution network against hurricanes. Emergency resources are operationally interdependent, and it is these interdependencies that determine how the resources should be distributed to the critical loads in the network. This work uses the concept of the Human Readable Table (HRT) to relate the interdependencies among these resources. The resource allocation optimization is then formulated into a Mixed-Integer Nonlinear Programming (MINP) problem. The proposed method is tested on the IEEE 70-node system. The results show that this two-step procedure decreases the probability of failure for the critical nodes during the pre-hurricane stage and increases the system's ability to recover during the post-hurricane stage.
Author Marti, Andrea
Yang, Zejun
Chen, Ying
Marti, Jose R.
Author_xml – sequence: 1
  givenname: Zejun
  orcidid: 0000-0003-1843-0335
  surname: Yang
  fullname: Yang, Zejun
  email: zyang@ece.ubc.ca
  organization: Department of Electrical Engineering, KU Leuven, Leuven, Belgium
– sequence: 2
  givenname: Andrea
  orcidid: 0000-0003-3650-0616
  surname: Marti
  fullname: Marti, Andrea
  email: andreatjml@gmail.com
  organization: Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC, Canada
– sequence: 3
  givenname: Ying
  orcidid: 0000-0001-7379-5025
  surname: Chen
  fullname: Chen, Ying
  email: chen_ying@tsinghua.edu.cn
  organization: Department of Electrical Engineering, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Jose R.
  orcidid: 0000-0003-3811-3687
  surname: Marti
  fullname: Marti, Jose R.
  email: jrms@ece.ubc.ca
  organization: Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC, Canada
BookMark eNp9kE1PAjEQhhuDiYD-Ab1s4nmxH9ulPRKCYEICQYzHzVC6WrK22JYY_71dIB48eOkk0_dpZ54e6lhnNUK3BA8IwfJhvXxdPQ8opnTAiGSEsQvUJZyLHJdD2UFdLATPheT4CvVC2GGMy3TRRYvFPpoPaLKVDu7glc5GTeMURONsFl02se9gU3fpvrTPpt5s26RpjG67ozcwNsRsdvDeKLA6XKPLGpqgb861j14eJ-vxLJ8vpk_j0TxXVPKYU5XGLsWQlAI2CjbbWhVcS83SuaG1FoTyGitWA0jMJVEMGAZNOQwFAAHWR_end_fefR50iNUujW_TlxUVuKQU80KklDillHcheF1XysTjbtGDaSqCq1ZfddRXtfqqs76E0j_o3idR_vt_6O4EGa31LyAFGxYFYT_p3H5B
CODEN ITPSEG
CitedBy_id crossref_primary_10_3390_su16073047
crossref_primary_10_1109_TSG_2024_3362344
crossref_primary_10_1109_ACCESS_2024_3415548
crossref_primary_10_3390_en18020422
crossref_primary_10_1016_j_epsr_2025_112027
crossref_primary_10_1016_j_epsr_2025_112237
crossref_primary_10_1109_TSG_2025_3578484
crossref_primary_10_1109_JIOT_2025_3584536
crossref_primary_10_3390_en18081940
crossref_primary_10_1016_j_segan_2025_101782
crossref_primary_10_1016_j_energy_2025_136450
crossref_primary_10_1109_ACCESS_2024_3510619
crossref_primary_10_1109_TPWRS_2024_3386851
crossref_primary_10_1016_j_eng_2024_10_004
Cites_doi 10.1109/ACCESS.2018.2878894
10.1049/iet-stg.2019.0169
10.1109/MPE.2014.2301514
10.3390/pr8101200
10.1109/WSC40007.2019.9004931
10.1109/TPWRS.2016.2641463
10.1109/TSG.2016.2605692
10.1016/j.ijepes.2021.107214
10.2172/1764623
10.1109/TPWRD.2013.2281265
10.1109/TSG.2016.2591885
10.1109/TWC.2009.061064
10.1109/TSMC.2017.2681623
10.1109/TII.2017.2768998
10.1109/TPWRS.2021.3088376
10.1109/JSYST.2017.2773837
10.1007/978-3-319-99843-5_1
10.1109/TITS.2010.2101063
10.1109/TPWRS.2013.2286171
10.1007/978-3-319-03518-5_12
10.1109/TPWRS.2016.2618365
10.1109/JPROC.2017.2666548
10.1109/PROC.1975.9770
10.1109/TSG.2015.2388736
10.1109/JPROC.2017.2684780
10.1504/IJCIS.2018.095619
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TPWRS.2022.3193133
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0679
EndPage 2629
ExternalDocumentID 10_1109_TPWRS_2022_3193133
9837441
Genre orig-research
GrantInformation_xml – fundername: Science and Technology Project of SGCC
  grantid: 52130418000L
– fundername: National Key Research and Development Program of China
  grantid: 2017YFB0903000
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c295t-2c110687168abcabdfc45e9e345eb2fe8125f0c3faa90591c3a30ae25a78aa1a3
IEDL.DBID RIE
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000980444400049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-8950
IngestDate Fri Jul 25 19:12:34 EDT 2025
Sat Nov 29 02:52:29 EST 2025
Tue Nov 18 22:11:34 EST 2025
Wed Aug 27 02:49:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-2c110687168abcabdfc45e9e345eb2fe8125f0c3faa90591c3a30ae25a78aa1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3650-0616
0000-0003-3811-3687
0000-0003-1843-0335
0000-0001-7379-5025
PQID 2806220548
PQPubID 85441
PageCount 9
ParticipantIDs proquest_journals_2806220548
crossref_citationtrail_10_1109_TPWRS_2022_3193133
crossref_primary_10_1109_TPWRS_2022_3193133
ieee_primary_9837441
PublicationCentury 2000
PublicationDate 2023-May
2023-5-00
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-May
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power systems
PublicationTitleAbbrev TPWRS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
Cardinal (ref2) 2022; 84
ref30
ref11
ref10
ref1
ref17
Alsubaie (ref25) 2016
ref16
ref18
Finkelstein (ref31) 2008
Zhang (ref19) 2019
ref24
ref23
ref26
ref20
ref22
ref21
(ref3) 2021
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref6
ref5
References_xml – ident: ref28
  doi: 10.1109/ACCESS.2018.2878894
– ident: ref21
  doi: 10.1049/iet-stg.2019.0169
– ident: ref1
  doi: 10.1109/MPE.2014.2301514
– ident: ref7
  doi: 10.3390/pr8101200
– ident: ref20
  doi: 10.1109/WSC40007.2019.9004931
– ident: ref22
  doi: 10.1109/TPWRS.2016.2641463
– ident: ref15
  doi: 10.1109/TSG.2016.2605692
– volume-title: Proc. 25th CIRED
  year: 2019
  ident: ref19
  article-title: Optimal resource allocation to reduce the distribution system risk induced by hurricanes
– ident: ref16
  doi: 10.1016/j.ijepes.2021.107214
– ident: ref14
  doi: 10.2172/1764623
– ident: ref10
  doi: 10.1109/TPWRD.2013.2281265
– year: 2021
  ident: ref3
  article-title: China flood death toll rises sharply to over 300
– ident: ref9
  doi: 10.1109/TSG.2016.2591885
– ident: ref23
  doi: 10.1109/TWC.2009.061064
– ident: ref12
  doi: 10.1109/TSMC.2017.2681623
– ident: ref5
  doi: 10.1109/TII.2017.2768998
– ident: ref24
  doi: 10.1109/TPWRS.2021.3088376
– ident: ref4
  doi: 10.1109/JSYST.2017.2773837
– volume: 84
  start-page: 12
  issue: 7
  year: 2022
  ident: ref2
  article-title: Extreme winter storms: Environmental impacts of public utility policies on vulnerable populations
  publication-title: J. Environ. Health
– ident: ref26
  doi: 10.1007/978-3-319-99843-5_1
– ident: ref11
  doi: 10.1109/TITS.2010.2101063
– year: 2016
  ident: ref25
  article-title: Improving critical infrastructure resilience with application to power distribution networks (T)
– ident: ref8
  doi: 10.1109/TPWRS.2013.2286171
– ident: ref27
  doi: 10.1007/978-3-319-03518-5_12
– ident: ref6
  doi: 10.1109/TPWRS.2016.2618365
– ident: ref17
  doi: 10.1109/JPROC.2017.2666548
– ident: ref30
  doi: 10.1109/PROC.1975.9770
– ident: ref13
  doi: 10.1109/TSG.2015.2388736
– ident: ref18
  doi: 10.1109/JPROC.2017.2684780
– ident: ref29
  doi: 10.1504/IJCIS.2018.095619
– volume-title: Failure Rate Modelling For Reliability and Risk
  year: 2008
  ident: ref31
SSID ssj0006679
Score 2.5218647
Snippet Optimal resource allocation is critical when maximizing the resilience of the electrical power distribution network against natural disasters. This paper...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2621
SubjectTerms Disaster management
Disaster response
Electric power distribution
Emergency procedures
Hurricanes
interdependencies
Minimization
Mixed integer
Natural disasters
Nonlinear programming
optimal resource allocation
Optimization
Resilience
Resource allocation
Resource management
Risk management
system restoration
Wind speed
Title Optimal Resource Allocation to Enhance Power Grid Resilience Against Hurricanes
URI https://ieeexplore.ieee.org/document/9837441
https://www.proquest.com/docview/2806220548
Volume 38
WOSCitedRecordID wos000980444400049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0679
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006679
  issn: 0885-8950
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4g8aAHX2hE0ezBm1ZKt9t2j8SAnIAoRm7NdB9KgmCg-Pvd2Rai0Zh4aXqYTdv5ujP7ze7MEHJlNPCQsdCzfJp5oUy4l0DEPaMEA6OjJAuNazYR9_vJeCyGFXKzyYXRWrvDZ_oWb91evprLFYbKmsKyqRCz1LfiOCpytTZWN4qKunoJPk1wf50g44vmaPj88GipYBBYhipYi7FvTsh1Vflhip1_6e7_780OyF65jqTtAvhDUtGzI7L7pbpgjQwG1hy8WaF1iJ62p-i6EAqaz2ln9oqQ0yE2SqP3i4lCycnUTXbafoGJXTrSnosRgrWIx-Sp2xnd9byyf4InA8FzL5D28yNkRAlkEjJlZMi10Mxes8Bo69u58SUzAMKuslqSAfNBBxziBKAF7IRUZ_OZPiXUjxXLpFRKgQoNCyDzFY8zGQPyES3rpLVWaCrL4uLY42KaOpLhi9SBkCIIaQlCnVxvxrwXpTX-lK6h2jeSpcbrpLHGLS1n3zLF3WJMIA6Ts99HnZMdbBtfHFxskGq-WOkLsi0_8slycel-rE8En8w-
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5VZRLwMDbKREcBP-xthKaxncSPFeooorTVKKJv0cU_tkpdO3Utfz8-J61AICReojycleS--M7f2XcHcOEsSsG5iDyf5pHQuYxyTGXkjOLobJqXwoVmE9l4nM_natqAd4dcGGttOHxm39Nt2Ms3a72jUFlXeTYlKEv9kRQiiatsrYPdTdOqsl5Oz1My3qfIxKo7m36__urJYJJ4jqp4j_Pf3FDoq_KHMQ4e5urZ_73bCRzXK0nWr6A_hYZdPYenv9QXbMFk4g3CnRfaB-lZf0nOi8Bg2zUbrG4JdDalVmns42ZhSHKxDNOd9W9w4RePbBiihOht4gv4djWYfRhGdQeFSCdKbqNE-89PiRPlWGosjdNCWmW5v5aJs967Sxdr7hCVX2f1NEceo00kZjliD_kZNFfrlX0JLM4ML7U2xqARjidYxkZmpc6QGInVbejtFVrourw4dblYFoFmxKoIIBQEQlGD0IbLw5j7qrjGP6VbpPaDZK3xNnT2uBX1_HsoaL-YUohFfv73UW_h8XD2ZVSMPo0_v4In1ES-OsbYgeZ2s7Ov4Uj_2C4eNm_CT_YTzNzPhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Resource+Allocation+to+Enhance+Power+Grid+Resilience+Against+Hurricanes&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Yang%2C+Zejun&rft.au=Marti%2C+Andrea&rft.au=Chen%2C+Ying&rft.au=Marti%2C+Jose+R.&rft.date=2023-05-01&rft.pub=IEEE&rft.issn=0885-8950&rft.volume=38&rft.issue=3&rft.spage=2621&rft.epage=2629&rft_id=info:doi/10.1109%2FTPWRS.2022.3193133&rft.externalDocID=9837441
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon