Improved Expression for Rank Distribution of Sparse Random Linear Network Coding

Characterization of the rank distribution of a sparse random matrix over a finite field can be decomposed into two subproblems. The first subproblem is the characterization of the probability <inline-formula> <tex-math notation="LaTeX">p(i,n) </tex-math></inline-formul...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE communications letters Ročník 25; číslo 5; s. 1472 - 1476
Hlavní autoři: Chen, Wenlin, Lu, Fang, Dong, Yan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1089-7798, 1558-2558
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Characterization of the rank distribution of a sparse random matrix over a finite field can be decomposed into two subproblems. The first subproblem is the characterization of the probability <inline-formula> <tex-math notation="LaTeX">p(i,n) </tex-math></inline-formula> that an <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-dimensional vector is linearly dependent of other <inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula> linearly independent <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-dimensional vectors. The second subproblem is the characterization of the rank distribution of a sparse random matrix as a function of <inline-formula> <tex-math notation="LaTeX">p(i,n) </tex-math></inline-formula>. In this letter, we focus on the second subproblem and present an exact solution to it. The derivation is based on an absorbing Markov chain and the eigen decomposition of the transition matrix. Compared with the state-of-the-art expressions, the derived expression is closed-form and of lower complexity. As a necessity for the exactness of the derived expression, we prove that the derived expression is equivalent to the state-of-the-art expressions.
AbstractList Characterization of the rank distribution of a sparse random matrix over a finite field can be decomposed into two subproblems. The first subproblem is the characterization of the probability <inline-formula> <tex-math notation="LaTeX">p(i,n) </tex-math></inline-formula> that an <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-dimensional vector is linearly dependent of other <inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula> linearly independent <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-dimensional vectors. The second subproblem is the characterization of the rank distribution of a sparse random matrix as a function of <inline-formula> <tex-math notation="LaTeX">p(i,n) </tex-math></inline-formula>. In this letter, we focus on the second subproblem and present an exact solution to it. The derivation is based on an absorbing Markov chain and the eigen decomposition of the transition matrix. Compared with the state-of-the-art expressions, the derived expression is closed-form and of lower complexity. As a necessity for the exactness of the derived expression, we prove that the derived expression is equivalent to the state-of-the-art expressions.
Characterization of the rank distribution of a sparse random matrix over a finite field can be decomposed into two subproblems. The first subproblem is the characterization of the probability [Formula Omitted] that an [Formula Omitted]-dimensional vector is linearly dependent of other [Formula Omitted] linearly independent [Formula Omitted]-dimensional vectors. The second subproblem is the characterization of the rank distribution of a sparse random matrix as a function of [Formula Omitted]. In this letter, we focus on the second subproblem and present an exact solution to it. The derivation is based on an absorbing Markov chain and the eigen decomposition of the transition matrix. Compared with the state-of-the-art expressions, the derived expression is closed-form and of lower complexity. As a necessity for the exactness of the derived expression, we prove that the derived expression is equivalent to the state-of-the-art expressions.
Author Chen, Wenlin
Dong, Yan
Lu, Fang
Author_xml – sequence: 1
  givenname: Wenlin
  orcidid: 0000-0001-5766-4551
  surname: Chen
  fullname: Chen, Wenlin
  email: wenlinchen@hust.edu.cn
  organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Fang
  orcidid: 0000-0002-9491-4895
  surname: Lu
  fullname: Lu, Fang
  email: lufang@hust.edu.cn
  organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
– sequence: 3
  givenname: Yan
  orcidid: 0000-0002-9512-6903
  surname: Dong
  fullname: Dong, Yan
  email: dongyan@hust.edu.cn
  organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
BookMark eNp9kMlOwzAQhi1UJNrCC8AlEucUL4kdH1EoUCmliOUcOckYuUtc7JTl7XEo4sCBy8xo5v9nRt8IDVrbAkKnBE8IwfKiyBfz-YRiiicMJyRL0gM0JGmaxTSEQahxJmMhZHaERt4vMcYZTckQ3c82W2ffoImmH1sH3hvbRtq66EG1q-jK-M6Zatf1Xaujx61yHvpZYzdRYVpQLrqD7t26VZTbxrQvx-hQq7WHk588Rs_X06f8Ni4WN7P8sohrKtMuppVOdaIYrpmkwESdVaLGogFGMeNSJELzJuOaSY5TULoSlAMNPc6xpJKwMTrf7w3vv-7Ad-XS7lwbTpY0pUHBJRdBRfeq2lnvHehy68xGuc-S4LInV36TK3ty5Q-5YMr-mGrTqZ5B55RZ_28921sNAPzeklTwhAr2BVgdfTQ
CODEN ICLEF6
CitedBy_id crossref_primary_10_1109_LCOMM_2022_3181722
crossref_primary_10_1186_s13638_022_02132_4
crossref_primary_10_1007_s11277_021_08497_x
crossref_primary_10_1109_LWC_2022_3147601
Cites_doi 10.1109/TCOMM.2017.2657621
10.1109/LCOMM.2019.2896626
10.1109/LCOMM.2017.2704110
10.1109/ISNETCOD.2011.5978939
10.1002/1098-2418(200010/12)17:3/4<197::AID-RSA2>3.0.CO;2-K
10.1109/ACCESS.2019.2907005
10.1017/CBO9780511987045
10.1093/oso/9780198534891.001.0001
10.1109/LCOMM.2010.110310.101480
10.1109/LCOMM.2020.2965928
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/LCOMM.2020.3041845
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2558
EndPage 1476
ExternalDocumentID 10_1109_LCOMM_2020_3041845
9276427
Genre orig-research
GrantInformation_xml – fundername: National Nature Science Foundation of China
  grantid: 91538203
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-2bf5f4a30c392e37c8b7c07de320369747f6d86f39605eafb726e2f6d66092913
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000648333800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-7798
IngestDate Mon Jun 30 10:20:25 EDT 2025
Sat Nov 29 03:56:05 EST 2025
Tue Nov 18 21:29:46 EST 2025
Wed Aug 27 02:30:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-2bf5f4a30c392e37c8b7c07de320369747f6d86f39605eafb726e2f6d66092913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9512-6903
0000-0001-5766-4551
0000-0002-9491-4895
PQID 2522916967
PQPubID 85419
PageCount 5
ParticipantIDs proquest_journals_2522916967
ieee_primary_9276427
crossref_primary_10_1109_LCOMM_2020_3041845
crossref_citationtrail_10_1109_LCOMM_2020_3041845
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE communications letters
PublicationTitleAbbrev COML
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref2
ref1
macdonald (ref10) 1995
References_xml – ident: ref5
  doi: 10.1109/TCOMM.2017.2657621
– ident: ref6
  doi: 10.1109/LCOMM.2019.2896626
– ident: ref1
  doi: 10.1109/LCOMM.2017.2704110
– ident: ref4
  doi: 10.1109/ISNETCOD.2011.5978939
– ident: ref3
  doi: 10.1002/1098-2418(200010/12)17:3/4<197::AID-RSA2>3.0.CO;2-K
– ident: ref7
  doi: 10.1109/ACCESS.2019.2907005
– ident: ref9
  doi: 10.1017/CBO9780511987045
– year: 1995
  ident: ref10
  publication-title: Symmetric Functions and Hall Polynomials
  doi: 10.1093/oso/9780198534891.001.0001
– ident: ref8
  doi: 10.1109/LCOMM.2010.110310.101480
– ident: ref2
  doi: 10.1109/LCOMM.2020.2965928
SSID ssj0008251
Score 2.3551083
Snippet Characterization of the rank distribution of a sparse random matrix over a finite field can be decomposed into two subproblems. The first subproblem is the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1472
SubjectTerms Decoding
Decomposition
Eigenvalues and eigenfunctions
Exact solutions
Fields (mathematics)
Markov chains
Markov processes
Matrices (mathematics)
Matrix decomposition
Network coding
rank distribution
Receivers
Sparse matrices
Sparse random linear network coding
Title Improved Expression for Rank Distribution of Sparse Random Linear Network Coding
URI https://ieeexplore.ieee.org/document/9276427
https://www.proquest.com/docview/2522916967
Volume 25
WOSCitedRecordID wos000648333800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-2558
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008251
  issn: 1089-7798
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5c8aAH3-L6IgdvWrebPtIcZd3Fg66LD_BW2mQCorbL7ir-fCdptyiK4K00SSkzSeb7knkAHJON19SmPTQCvTATgSe50J5MwogAtJS5clVLrsRwmDw-ytECnDaxMIjonM_wzD66u3xdqjd7VNahrxBcFi1oCRFXsVrNrmtDMCtnekmIUSbzABlfdq56N9fXRAU5MVQ_JEoTfTNCrqrKj63Y2ZfB2v_-bB1WaxzJzivFb8ACFpuw8iW74BaMqgMD1Kz_Ubu7FowwKrvNimd2YTPm1sWuWGnY3ZgoLto2Xb4yoqi0BNiwchJnvdKauG14GPTve5deXUDBU1xGM4_nJjJhFviKUBAGQiW5UL7QGNjrR8skTKyT2AREYyLMTC54jJzexbFPsKkb7MBiURa4C4yHSDTa6NhEQRgJPyPkqLTCUGueRJnfhu5coqmqs4vbIhcvqWMZvkydFlKrhbTWQhtOmjHjKrfGn723rNybnrXI23AwV1xaL79pyglVEu6Vsdj7fdQ-LHPrnOI8Fw9gcTZ5w0NYUu-zp-nkyM2sT62cyiw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-VDgl42AcD0X3hh71BmOfYcfw4dZ060XYVFGlvUWqfJQQkVdch_nzOTlqBQJP2FsV2FN3Zvt_Pvg-AU7Lxjtpcgl5jIkudJkZol5hcKgLQxsxtrFoy0pNJfntrph14v4mFQcTofIYfwmO8y3e1vQ9HZWf0FYLL-glsKSkFb6K1NvtuCMJs3OkNYUaTr0NkuDkb9W_GYyKDgjgql0Rq1F9mKNZV-Wczjhbmaudx_7YL2y2SZBeN6vegg9VLePFHfsF9mDZHBujY4Ffr8FoxQqnsU1l9Y5chZ25b7orVnn1eEMnF0ObqH4xIKi0CNmncxFm_DkbuFXy5Gsz6w6QtoZBYYdQqEXOvvCxTbgkHYaptPteWa4dpuIAMXMJnLs98SkRGYennWmQo6F2WcQJO5-lr6FZ1hW-ACYlEpL3LvEql0rwk7GidRemcyFXJe3C-lmhh2_zioczF9yLyDG6KqIUiaKFotdCDd5sxiya7xoO994PcNz1bkffgaK24ol2Ad4UgXEnI12T64P-j3sKz4Ww8KkbXk4-H8FwEV5Xox3gE3dXyHo_hqf25-nq3PImz7Dddpc1z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Expression+for+Rank+Distribution+of+Sparse+Random+Linear+Network+Coding&rft.jtitle=IEEE+communications+letters&rft.au=Chen%2C+Wenlin&rft.au=Lu%2C+Fang&rft.au=Dong%2C+Yan&rft.date=2021-05-01&rft.pub=IEEE&rft.issn=1089-7798&rft.volume=25&rft.issue=5&rft.spage=1472&rft.epage=1476&rft_id=info:doi/10.1109%2FLCOMM.2020.3041845&rft.externalDocID=9276427
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7798&client=summon