Learning-Aided Beam Prediction in mmWave MU-MIMO Systems for High-Speed Railway

The problem of beam alignment and tracking in high mobility scenarios such as high-speed railway(HSR) becomes extremely challenging, since large overhead cost and significant time delay are introduced for fast time-varying channel estimation. To tackle this challenge, we propose a learning-aided bea...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on communications Ročník 70; číslo 1; s. 693 - 706
Hlavní autoři: Meng, Fan, Liu, Shengheng, Huang, Yongming, Lu, Zhaohua
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0090-6778, 1558-0857
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The problem of beam alignment and tracking in high mobility scenarios such as high-speed railway(HSR) becomes extremely challenging, since large overhead cost and significant time delay are introduced for fast time-varying channel estimation. To tackle this challenge, we propose a learning-aided beam prediction scheme for HSR networks, which predicts the beam directions and the channel amplitudes within a period of future time with fine time granularity, using a group of observations. Concretely, we transform the problem of high-dimensional beam prediction into a two-stage task, i.e., a low-dimensional parameter estimation and a cascaded hybrid beamforming operation. In the first stage, the location and speed of a certain terminal are estimated by maximum likelihood criterion, and a data-driven data fusion module is designed to improve the final estimation accuracy and robustness. Then, the probable future beam directions and channel amplitudes are predicted, based on the HSR scenario priors including deterministic trajectory, motion model, and channel model. Furthermore, we incorporate a learnable non-linear mapping module into the overall beam prediction to allow non-linear tracks. Both of the proposed learnable modules are model-based and have a good interpretability. Compared to the existing beam management scheme, the proposed beam prediction has (near) zero overhead cost and time delay. Simulation results verify the effectiveness of the proposed scheme.
AbstractList The problem of beam alignment and tracking in high mobility scenarios such as high-speed railway(HSR) becomes extremely challenging, since large overhead cost and significant time delay are introduced for fast time-varying channel estimation. To tackle this challenge, we propose a learning-aided beam prediction scheme for HSR networks, which predicts the beam directions and the channel amplitudes within a period of future time with fine time granularity, using a group of observations. Concretely, we transform the problem of high-dimensional beam prediction into a two-stage task, i.e., a low-dimensional parameter estimation and a cascaded hybrid beamforming operation. In the first stage, the location and speed of a certain terminal are estimated by maximum likelihood criterion, and a data-driven data fusion module is designed to improve the final estimation accuracy and robustness. Then, the probable future beam directions and channel amplitudes are predicted, based on the HSR scenario priors including deterministic trajectory, motion model, and channel model. Furthermore, we incorporate a learnable non-linear mapping module into the overall beam prediction to allow non-linear tracks. Both of the proposed learnable modules are model-based and have a good interpretability. Compared to the existing beam management scheme, the proposed beam prediction has (near) zero overhead cost and time delay. Simulation results verify the effectiveness of the proposed scheme.
Author Liu, Shengheng
Lu, Zhaohua
Huang, Yongming
Meng, Fan
Author_xml – sequence: 1
  givenname: Fan
  orcidid: 0000-0002-9769-0057
  surname: Meng
  fullname: Meng, Fan
  email: mengfan@pmlabs.com.cn
  organization: Purple Mountain Laboratories, Nanjing, China
– sequence: 2
  givenname: Shengheng
  orcidid: 0000-0001-6579-9798
  surname: Liu
  fullname: Liu, Shengheng
  email: s.liu@seu.edu.cn
  organization: Purple Mountain Laboratories, Nanjing, China
– sequence: 3
  givenname: Yongming
  orcidid: 0000-0003-3616-4616
  surname: Huang
  fullname: Huang, Yongming
  email: huangym@seu.edu.cn
  organization: Purple Mountain Laboratories, Nanjing, China
– sequence: 4
  givenname: Zhaohua
  surname: Lu
  fullname: Lu, Zhaohua
  email: lu.zhaohua@zte.com.cn
  organization: ZTE Corporation, Shenzhen, China
BookMark eNp9kMtOwkAUhidGEwF9Ad00cV2cC53LEokKCU2NQFxOpu0pDqEtzhQNb28rxIULVycn-b9z-frovKorQOiG4CEhWN0vJ0kcDymmZMgIHSnOzlCPRJEMsYzEOephrHDIhZCXqO_9BmM8woz1UDIH4ypbrcOxzSEPHsCUwYuD3GaNravAVkFZvplPCOJVGM_iJFgcfAOlD4raBVO7fg8XO2jBV2O3X-ZwhS4Ks_VwfaoDtHp6XE6m4Tx5nk3G8zCjKmpCKlNmIiGLtqWQ0TzDUnDJR3nOeKoiTgURWWGkEsxIoMByzPPUSE4g5bJgA3R3nLtz9ccefKM39d5V7UpNOVFRB5I2JY-pzNXeOyh0ZhvTPda49l5NsO706R99utOnT_palP5Bd86Wxh3-h26PkAWAX0BFSipC2DdGEHvw
CODEN IECMBT
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3409832
crossref_primary_10_1049_cmu2_12477
crossref_primary_10_1109_LWC_2024_3349627
crossref_primary_10_1109_MWC_014_2200414
crossref_primary_10_1038_s41598_024_59241_x
crossref_primary_10_1109_JIOT_2024_3491180
crossref_primary_10_1016_j_sigpro_2024_109447
crossref_primary_10_1109_LWC_2025_3574215
crossref_primary_10_1109_TCOMM_2024_3519527
crossref_primary_10_1109_JIOT_2023_3337131
crossref_primary_10_1007_s00034_023_02336_z
crossref_primary_10_1109_TCOMM_2024_3395319
crossref_primary_10_1109_TWC_2023_3317130
crossref_primary_10_1109_TSP_2023_3307886
crossref_primary_10_1109_MWC_004_2200482
Cites_doi 10.1109/TVT.2020.2971856
10.1109/TCOMM.2018.2855197
10.1109/LWC.2018.2832128
10.1109/TCOMM.2019.2924010
10.1109/LWC.2020.3005983
10.1109/TSP.2020.2976585
10.1109/TCCN.2017.2758370
10.1109/TWC.2020.3038787
10.1109/TWC.2020.3001736
10.1137/120869778
10.1109/MWC.2016.1500255WC
10.1109/JSTSP.2016.2520899
10.1109/MWC.2010.5490974
10.1109/MCOM.2015.7295467
10.1109/ICASSP40776.2020.9054075
10.1109/TVT.2019.2939400
10.1109/TCOMM.2020.2988256
10.1109/JSAC.2017.2719924
10.1049/iet-com.2016.0999
10.1109/TWC.2019.2940454
10.1109/TWC.2014.011714.130846
10.1109/GLOBECOM38437.2019.9013296
10.1109/GLOBECOM46510.2021.9685904
10.1109/COMST.2018.2869411
10.1109/MWC.2019.1800447
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCOMM.2021.3124963
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0857
EndPage 706
ExternalDocumentID 10_1109_TCOMM_2021_3124963
9598911
Genre orig-research
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2020YFB1806600
– fundername: Research Project of Jiangsu Province
  grantid: BE2018121
  funderid: 10.13039/501100018615
– fundername: National Natural Science Foundation of China
  grantid: 61720106003; 62001103
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-28b3a578fc292ec2dc0876864dd36b9562717cfa8973a8e2e3d06dba861eb68f3
IEDL.DBID RIE
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000742731500054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0090-6778
IngestDate Mon Jun 30 10:19:30 EDT 2025
Sat Nov 29 04:08:22 EST 2025
Tue Nov 18 21:36:21 EST 2025
Wed Aug 27 03:03:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-28b3a578fc292ec2dc0876864dd36b9562717cfa8973a8e2e3d06dba861eb68f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3616-4616
0000-0002-9769-0057
0000-0001-6579-9798
PQID 2619589731
PQPubID 85472
PageCount 14
ParticipantIDs ieee_primary_9598911
proquest_journals_2619589731
crossref_citationtrail_10_1109_TCOMM_2021_3124963
crossref_primary_10_1109_TCOMM_2021_3124963
PublicationCentury 2000
PublicationDate 2022-Jan.
2022-1-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
(ref28) 2020
ref11
ref10
Sutton (ref18) 2018
(ref31) 2020
ref2
ref1
ref17
ref16
ref19
Vaswani (ref30)
(ref27) 2020
ref24
Goodfellow (ref4) 2016
ref23
ref26
ref25
ref20
ref22
ref21
ref29
ref8
ref7
ref9
ref3
ref6
ref5
Zaidi (ref32) 2017
References_xml – ident: ref23
  doi: 10.1109/TVT.2020.2971856
– ident: ref22
  doi: 10.1109/TCOMM.2018.2855197
– ident: ref7
  doi: 10.1109/LWC.2018.2832128
– ident: ref9
  doi: 10.1109/TCOMM.2019.2924010
– ident: ref16
  doi: 10.1109/LWC.2020.3005983
– ident: ref8
  doi: 10.1109/TSP.2020.2976585
– ident: ref5
  doi: 10.1109/TCCN.2017.2758370
– volume-title: Study on Channel Model for Frequencies From 0.5 to 100 GHz
  year: 2020
  ident: ref28
– ident: ref21
  doi: 10.1109/TWC.2020.3038787
– ident: ref6
  doi: 10.1109/TWC.2020.3001736
– ident: ref29
  doi: 10.1137/120869778
– ident: ref25
  doi: 10.1109/MWC.2016.1500255WC
– ident: ref12
  doi: 10.1109/JSTSP.2016.2520899
– ident: ref2
  doi: 10.1109/MWC.2010.5490974
– ident: ref24
  doi: 10.1109/MCOM.2015.7295467
– volume-title: Enhancements on Predictable Mobility for Beam Management
  year: 2020
  ident: ref27
– volume-title: Deep Learning
  year: 2016
  ident: ref4
– ident: ref17
  doi: 10.1109/ICASSP40776.2020.9054075
– volume-title: Reinforcement Learning: An Introduction
  year: 2018
  ident: ref18
– ident: ref14
  doi: 10.1109/TVT.2019.2939400
– volume-title: 5G New Radio: Designing for the Future
  year: 2017
  ident: ref32
– ident: ref20
  doi: 10.1109/TCOMM.2020.2988256
– volume-title: Moderator Summary for Multi-Beam Enhancement: EVM
  year: 2020
  ident: ref31
– ident: ref3
  doi: 10.1109/JSAC.2017.2719924
– ident: ref13
  doi: 10.1049/iet-com.2016.0999
– ident: ref19
  doi: 10.1109/TWC.2019.2940454
– ident: ref11
  doi: 10.1109/TWC.2014.011714.130846
– ident: ref15
  doi: 10.1109/GLOBECOM38437.2019.9013296
– ident: ref1
  doi: 10.1109/GLOBECOM46510.2021.9685904
– start-page: 6000
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. (NIPS)
  ident: ref30
  article-title: Attention is all you need
– ident: ref26
  doi: 10.1109/COMST.2018.2869411
– ident: ref10
  doi: 10.1109/MWC.2019.1800447
SSID ssj0004033
Score 2.5140395
Snippet The problem of beam alignment and tracking in high mobility scenarios such as high-speed railway(HSR) becomes extremely challenging, since large overhead cost...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 693
SubjectTerms alternating optimization
Amplitudes
Array signal processing
Beam prediction
Beamforming
data fusion
Data integration
High speed rail
high-speed railway
hybrid precoder
Learning
Maximum likelihood estimates
Maximum likelihood estimation
Millimeter waves
Modules
Overhead costs
Parameter estimation
Predictive models
Radio frequency
Railway tracks
Time lag
Training
Title Learning-Aided Beam Prediction in mmWave MU-MIMO Systems for High-Speed Railway
URI https://ieeexplore.ieee.org/document/9598911
https://www.proquest.com/docview/2619589731
Volume 70
WOSCitedRecordID wos000742731500054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0857
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004033
  issn: 0090-6778
  databaseCode: RIE
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4qHvTgW1xdJQdvGm2TbpMcV1EUrCu-byVNZqWwW2Ufiv_eJJtdFUXw1sIE2nxJZr4k8w1Cu3ZZTE3cMASiBEgCSURku1BEa665EiY2vg7Z_QW_vBSPj_JqCu1PcmEAwF8-gwP36M_yzbMeuq2yQ9mQQrpE3mnO01Gu1mcOZMSC4qS7zs7FOEEmkoe3x60ss1SQxpahWrqRsm9OyFdV-bEUe_9yuvi_L1tCCyGOxM0R8MtoCqoVNP9FXXAVtYJ26hNplgYMPgLVxVc9dzLj0MBlhbvdB_UKOLsj2XnWwkG-HNtAFrsLIOTmxTo3fK3Kzpt6X0N3pye3x2ck1E8gmsrGgFBRMGVnZNu-UtDUaKc_J9LEGJYWlhhRy-V0WwnJmRJAgRkLXKFEGkORijZbRzPVcwUbCAsGxi5FhQ2m4sRaS5ZGQoPhBdM2JtM1FI87NNdBXNzVuOjknmREMvcg5A6EPIBQQ3uTNi8jaY0_rVddt08sQ4_XUH2MWx5mXz93rLDh_ire_L3VFpqjLo3Bb6XU0cygN4RtNKtfB2W_t-MH1gdAkMjS
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSysxEB5EhaMPXo6K9ZoH3zzR3WQvyaOKothtxVPP8W3JJlMp2Cq1Kv57kzStiiL4tgsT2M2XZOZLMt8A7NhlMTNxaihGCdIEk4jKdqWo1rnOlTCx8XXI_tXzRkNcX8uLCfgzzoVBRH_5DPfcoz_LN3f60W2V7ctUCukSeafSJGHRMFvrLQsy4kFz0l1oz8UoRSaS-62jZlFYMshiy1Et4cj4Bzfk66p8Woy9hzmZ_9m3LcBciCTJwRD6RZjA3m-YfacvuATNoJ56Qw86Bg05RNUlF313NuPwIJ0e6Xb_qyckxRUtzoomCQLmxIayxF0BoX_vrXsjl6pz-6xeluHq5Lh1dEpDBQWqmUwHlImKKzsn2_aVoWZGOwU6kSXG8Kyy1IhZNqfbSsicK4EMubHQVUpkMVaZaPMVmOzd9XAViOBo7GJU2XAqTqy15FkkNJq84tpGZboG8ahDSx3kxV2Vi9vS04xIlh6E0oFQBhBqsDtucz8U1_jWesl1-9gy9HgNNka4lWH-PZSOF6bur-K1r1ttw6_TVlEv62eN83WYYS6pwW-sbMDkoP-ImzCtnwadh_6WH2Sv4JHMGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning-Aided+Beam+Prediction+in+mmWave+MU-MIMO+Systems+for+High-Speed+Railway&rft.jtitle=IEEE+transactions+on+communications&rft.au=Meng%2C+Fan&rft.au=Liu%2C+Shengheng&rft.au=Huang%2C+Yongming&rft.au=Lu%2C+Zhaohua&rft.date=2022-01-01&rft.pub=IEEE&rft.issn=0090-6778&rft.volume=70&rft.issue=1&rft.spage=693&rft.epage=706&rft_id=info:doi/10.1109%2FTCOMM.2021.3124963&rft.externalDocID=9598911
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon