Hybrid Particle Filter-Particle Swarm Optimization Algorithm and Application to Fuzzy Controlled Servo Systems

This article presents a hybrid metaheuristic optimization algorithm that combines particle filter (PF) and particle swarm optimization (PSO) algorithms. The new PF-PSO algorithm consists of two steps: the first generates randomly the particle population;and the second zooms the search domain. An app...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on fuzzy systems Ročník 30; číslo 10; s. 4286 - 4297
Hlavní autori: Pozna, Claudiu, Precup, Radu-Emil, Horvath, Erno, Petriu, Emil M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1063-6706, 1941-0034
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This article presents a hybrid metaheuristic optimization algorithm that combines particle filter (PF) and particle swarm optimization (PSO) algorithms. The new PF-PSO algorithm consists of two steps: the first generates randomly the particle population;and the second zooms the search domain. An application of this algorithm to the optimal tuning of proportional-integral-fuzzy controllers for the position control of a family of integral-type servo systems is then presented as a second contribution. The reduction in PF-PSO algorithm's cost function allows for reduced energy consumption of the fuzzy control system. A comparison with other metaheuristic algorithms on canonical test functions and experimental results are presented at the end of this article.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1063-6706
1941-0034
DOI:10.1109/TFUZZ.2022.3146986