Combinatorial Iterative Algorithms for Computing the Centroid of an Interval Type-2 Fuzzy Set

Computing the centroid of an interval type-2 fuzzy set (IT2 FS) is an important type-reduction method. The aim of this paper is to develop a new method to calculate the centroid of an IT2 FS when the problems of centroid computation of an IT2 FS are continuous. For the continuous centroid computatio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on fuzzy systems Ročník 28; číslo 4; s. 607 - 617
Hlavní autori: Liu, Xianliang, Wan, Shuping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1063-6706, 1941-0034
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Computing the centroid of an interval type-2 fuzzy set (IT2 FS) is an important type-reduction method. The aim of this paper is to develop a new method to calculate the centroid of an IT2 FS when the problems of centroid computation of an IT2 FS are continuous. For the continuous centroid computation problems, the structures of optimal solutions are strictly proven from mathematics for the first time in this paper. Furthermore, we also prove that the structures of the optimal solutions are unique in the sense of almost everywhere equal, i.e., if there are two optimal solutions f 1 (x) and f 2 (x), the Lebesgue measure of {x|f 1 (x) ≠ f 2 (x)} is equal to 0. Subsequently, a combinatorial iterative (CI) method is proposed to solve the roots of the sufficiently differentiable objective functions. It is proven that the convergence of the proposed iterative method is at least sixth order. Based on the proposed iterative method, two algorithms, called CI algorithms, are devised to compute the centroid of anIT2 FS. The efficiencies of CI algorithms are demonstrated by comparing the continuous Karnik-Mendel algorithms and the Hallye's methods with the CI algorithms through three numerical examples.
AbstractList Computing the centroid of an interval type-2 fuzzy set (IT2 FS) is an important type-reduction method. The aim of this paper is to develop a new method to calculate the centroid of an IT2 FS when the problems of centroid computation of an IT2 FS are continuous. For the continuous centroid computation problems, the structures of optimal solutions are strictly proven from mathematics for the first time in this paper. Furthermore, we also prove that the structures of the optimal solutions are unique in the sense of almost everywhere equal, i.e., if there are two optimal solutions [Formula Omitted] and [Formula Omitted], the Lebesgue measure of [Formula Omitted] is equal to 0. Subsequently, a combinatorial iterative (CI) method is proposed to solve the roots of the sufficiently differentiable objective functions. It is proven that the convergence of the proposed iterative method is at least sixth order. Based on the proposed iterative method, two algorithms, called CI algorithms, are devised to compute the centroid of an IT2 FS. The efficiencies of CI algorithms are demonstrated by comparing the continuous Karnik–Mendel algorithms and the Hallye's methods with the CI algorithms through three numerical examples.
Computing the centroid of an interval type-2 fuzzy set (IT2 FS) is an important type-reduction method. The aim of this paper is to develop a new method to calculate the centroid of an IT2 FS when the problems of centroid computation of an IT2 FS are continuous. For the continuous centroid computation problems, the structures of optimal solutions are strictly proven from mathematics for the first time in this paper. Furthermore, we also prove that the structures of the optimal solutions are unique in the sense of almost everywhere equal, i.e., if there are two optimal solutions f 1 (x) and f 2 (x), the Lebesgue measure of {x|f 1 (x) ≠ f 2 (x)} is equal to 0. Subsequently, a combinatorial iterative (CI) method is proposed to solve the roots of the sufficiently differentiable objective functions. It is proven that the convergence of the proposed iterative method is at least sixth order. Based on the proposed iterative method, two algorithms, called CI algorithms, are devised to compute the centroid of anIT2 FS. The efficiencies of CI algorithms are demonstrated by comparing the continuous Karnik-Mendel algorithms and the Hallye's methods with the CI algorithms through three numerical examples.
Author Liu, Xianliang
Wan, Shuping
Author_xml – sequence: 1
  givenname: Xianliang
  orcidid: 0000-0003-3970-1798
  surname: Liu
  fullname: Liu, Xianliang
  email: liuxianliang1@126.com
  organization: College of Information Technology, Jiangxi University of Finance and Economics, Nanchang, China
– sequence: 2
  givenname: Shuping
  orcidid: 0000-0001-6504-9700
  surname: Wan
  fullname: Wan, Shuping
  email: shupingwan@163.com
  organization: College of Information Technology, Jiangxi University of Finance and Economics, Nanchang, China
BookMark eNp9kE9rAjEQxUOxULX9Au0l0PPaTHbz7yhSW0HooXoRyhLTrEZ0Y7NR0E_fWKWHHgoDMwzvN8N7HdSqfW0RugfSAyDqaTKczmY9SkD1qAJQIK9QG1QBGSF50Uoz4XnGBeE3qNM0K0KgYCDb6GPgN3NX6-iD02s8ijbo6PYW99eLtIrLTYMrH3CSbXfR1QsclxYPbB2Dd5_YV1jXeFQnbJ_wyWFrM4qHu-PxgN9tvEXXlV439u7Su2g6fJ4MXrPx28to0B9nhioWM0q40WzOmAbFcjHXjKcCWQkoqABKhTHVXHDKwRRgRCWZprIqTGGZlFTlXfR4vrsN_mtnm1iu_C7U6WVJc8kJK_JUXSTPKhN80wRblcbF5NYnM9qtSyDlKczyJ8zyFGZ5CTOh9A-6DW6jw-F_6OEMOWvtLyC5yoWQ-TfIPIHT
CODEN IEFSEV
CitedBy_id crossref_primary_10_1109_TEM_2021_3098718
crossref_primary_10_1016_j_fss_2024_109247
crossref_primary_10_1016_j_fss_2025_109508
crossref_primary_10_1007_s40747_025_01798_9
crossref_primary_10_1002_pa_2948
crossref_primary_10_1007_s12530_023_09532_x
crossref_primary_10_1016_j_ins_2023_02_022
crossref_primary_10_1155_2021_9975056
crossref_primary_10_1007_s40815_024_01873_2
crossref_primary_10_1007_s12530_022_09452_2
crossref_primary_10_1016_j_ins_2024_120581
crossref_primary_10_1007_s12559_021_09928_4
crossref_primary_10_1109_TNNLS_2022_3203381
crossref_primary_10_1007_s13042_023_01825_6
Cites_doi 10.1016/j.ins.2016.01.015
10.1016/j.asoc.2015.06.050
10.1109/FUZZ-IEEE.2015.7337810
10.1109/TFUZZ.2014.2336255
10.1109/TCYB.2014.2308631
10.1016/j.ejor.2016.09.059
10.1109/TFUZZ.2010.2043439
10.1002/9780470599655
10.1109/TFUZZ.2011.2130528
10.1109/TFUZZ.2010.2045386
10.1109/TFUZZ.2013.2280133
10.1002/9781118886540
10.1109/TFUZZ.2017.2699168
10.1109/FUZZ-IEEE.2015.7337989
10.1016/j.asoc.2017.11.032
10.1016/j.isatra.2017.03.022
10.1016/j.ins.2008.11.018
10.1109/TFUZZ.2008.924329
10.1109/NAFIPS.2008.4531244
10.1016/j.fss.2018.02.012
10.1109/TFUZZ.2018.2865134
10.1016/S0020-0255(01)00069-X
10.1016/j.ins.2006.03.003
10.1016/j.eswa.2018.09.046
10.1016/j.eswa.2016.11.001
10.1109/FUZZ-IEEE.2015.7337871
10.1016/j.ijar.2016.09.007
10.1109/TFUZZ.2010.2046904
10.1109/TFUZZ.2012.2227488
10.1016/j.eswa.2016.12.029
10.1016/j.asoc.2014.12.010
10.1016/j.ins.2018.09.002
10.1109/FUZZY.2011.6007317
10.1109/TFUZZ.2006.882463
10.1016/j.eswa.2010.05.023
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2019.2911918
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 617
ExternalDocumentID 10_1109_TFUZZ_2019_2911918
8693778
Genre orig-research
GrantInformation_xml – fundername: Jiangxi Province Social Science
  grantid: 18GL13
– fundername: National Natural Science Foundation of China
  grantid: 11701236; 71740021; 11861034; 1261263018
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-206ca5b55a19537ba56a5618f714271227ccfb76261c41c7f85a28f4c4e588293
IEDL.DBID RIE
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524497000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Sun Jun 29 16:08:47 EDT 2025
Tue Nov 18 21:18:38 EST 2025
Sat Nov 29 03:12:38 EST 2025
Wed Aug 27 02:42:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-206ca5b55a19537ba56a5618f714271227ccfb76261c41c7f85a28f4c4e588293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3970-1798
0000-0001-6504-9700
PQID 2386054354
PQPubID 85428
PageCount 11
ParticipantIDs crossref_primary_10_1109_TFUZZ_2019_2911918
ieee_primary_8693778
proquest_journals_2386054354
crossref_citationtrail_10_1109_TFUZZ_2019_2911918
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref10
ref2
ref1
ref17
ref16
ref19
liu (ref26) 2011; 19
ref18
mendel (ref32) 2014
ref24
ref25
ref22
ref28
ref27
ref29
ref8
mathews (ref38) 2004
ref9
ref3
ref6
wu (ref20) 2009; 17
melgarejo (ref23) 0
ref5
hu (ref21) 2010; 25
sarah (ref4) 2019; 117
dhar (ref7) 2018; 63
References_xml – ident: ref37
  doi: 10.1016/j.ins.2016.01.015
– year: 2004
  ident: ref38
  publication-title: Numerical Methods Using MATLAB
– ident: ref1
  doi: 10.1016/j.asoc.2015.06.050
– ident: ref36
  doi: 10.1109/FUZZ-IEEE.2015.7337810
– ident: ref35
  doi: 10.1109/TFUZZ.2014.2336255
– ident: ref29
  doi: 10.1109/TCYB.2014.2308631
– ident: ref11
  doi: 10.1016/j.ejor.2016.09.059
– ident: ref16
  doi: 10.1109/TFUZZ.2010.2043439
– ident: ref17
  doi: 10.1002/9780470599655
– volume: 19
  start-page: 652
  year: 2011
  ident: ref26
  article-title: Connect Karnik-Mendel algorithms to root-finding for computing the centroid of an interval type-2 fuzzy set
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2011.2130528
– ident: ref18
  doi: 10.1109/TFUZZ.2010.2045386
– ident: ref33
  doi: 10.1109/TFUZZ.2013.2280133
– year: 2014
  ident: ref32
  publication-title: Introduction to Type-2 Fuzzy Logic Control Theory and Applications
  doi: 10.1002/9781118886540
– start-page: 190
  year: 0
  ident: ref23
  article-title: A fast recursive method to compute the generalized centroid of all interval type-2 fuzzy set
  publication-title: Proc Annu Meeting North Amer Fuzzy Inf Process Soc
– ident: ref27
  doi: 10.1109/TFUZZ.2017.2699168
– ident: ref34
  doi: 10.1109/FUZZ-IEEE.2015.7337989
– volume: 63
  start-page: 154
  year: 2018
  ident: ref7
  article-title: A novel method for image thresholding using interval type-2 fuzzy set and Bat algorithm
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.11.032
– ident: ref14
  doi: 10.1016/j.isatra.2017.03.022
– ident: ref6
  doi: 10.1016/j.ins.2008.11.018
– volume: 17
  start-page: 923
  year: 2009
  ident: ref20
  article-title: Enhanced Karnik-Mendel algorithms
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2008.924329
– ident: ref22
  doi: 10.1109/NAFIPS.2008.4531244
– ident: ref2
  doi: 10.1016/j.fss.2018.02.012
– ident: ref28
  doi: 10.1109/TFUZZ.2018.2865134
– volume: 25
  start-page: 637
  year: 2010
  ident: ref21
  article-title: Fast algorithm to calculate generalized centroid of interval type-2 fuzzy set
  publication-title: Control Decis
– ident: ref15
  doi: 10.1016/S0020-0255(01)00069-X
– ident: ref19
  doi: 10.1016/j.ins.2006.03.003
– volume: 117
  start-page: 312
  year: 2019
  ident: ref4
  article-title: Fuzzy type-II De-Novo programming for resource allocation and target setting in network data envelopment analysis: A natural gas supply chain
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.09.046
– ident: ref10
  doi: 10.1016/j.eswa.2016.11.001
– ident: ref30
  doi: 10.1109/FUZZ-IEEE.2015.7337871
– ident: ref12
  doi: 10.1016/j.ijar.2016.09.007
– ident: ref9
  doi: 10.1109/TFUZZ.2010.2046904
– ident: ref31
  doi: 10.1109/TFUZZ.2012.2227488
– ident: ref13
  doi: 10.1016/j.eswa.2016.12.029
– ident: ref8
  doi: 10.1016/j.asoc.2014.12.010
– ident: ref3
  doi: 10.1016/j.ins.2018.09.002
– ident: ref24
  doi: 10.1109/FUZZY.2011.6007317
– ident: ref25
  doi: 10.1109/TFUZZ.2006.882463
– ident: ref5
  doi: 10.1016/j.eswa.2010.05.023
SSID ssj0014518
Score 2.3952892
Snippet Computing the centroid of an interval type-2 fuzzy set (IT2 FS) is an important type-reduction method. The aim of this paper is to develop a new method to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 607
SubjectTerms Algorithms
Centroid computation
Centroids
Combinatorial analysis
Computation
Computational complexity
Convergence
decision analysis
Frequency selective surfaces
Fuzzy sets
interval type-2 fuzzy sets (IT2 FSs)
Iterative algorithms
Iterative methods
Karnik–Mendel algorithms
Optimization
Uncertainty
Title Combinatorial Iterative Algorithms for Computing the Centroid of an Interval Type-2 Fuzzy Set
URI https://ieeexplore.ieee.org/document/8693778
https://www.proquest.com/docview/2386054354
Volume 28
WOSCitedRecordID wos000524497000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-m-KAPzk-cX-TBN60uWfP1OMShICI4RQQpaZrqYG6ydYL-9V7SbiiKIPShlKSU_i53v7vk7gAOFNepsQaFF61ZFPtAkzEqjdBYNzOe88yGmO7dpby6Uvf3-roGR7NcGOdcOHzmjv1t2MvPhnbiQ2UnSqAxlWoO5qQUZa7WbMcg5rRMexOtSMimmCbINPVJt3P78OBPceljpn1BM_XNCIWuKj9UcbAvnfr_vmwFliseSdol8KtQc4M1qE97NJBqya7B0peCg-vwiAPQFfaONsoduQgllVHfkXb_CR8Vzy9jgiyWlO_BKQT5IQkR4GEvI8OcmAEJQUQUUOJ92IiRzuTj453cuGIDbjtn3dPzqGqwEFmmeYErRFjDU86N30yTqeECL6pySWMmKWPS2jxFdSmojamVueKGqTy2sePIzHVrE-YHw4HbAtJylFFHqaEuQ4aWqtxmWhodtzJUE1I0gE7_eGKr6uO-CUY_CV5IUycBpcSjlFQoNeBwNue1rL3x5-h1j8tsZAVJA3anwCbV8hwnyFPQjUOmGG__PmsHFpl3rMMRnV2YL0YTtwcL9q3ojUf7QfI-AT4s1MY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mB6gPfovTqXnwTeuWrGmSRxGH4hyCU0SQkqapDuYmrhP0r_eSdUNRBKEPpSSl9He5-90ldwewL7lKtNEovGjNgtAFmrSWSYDGupbyjKfGx3Rvm6LVknd36qoEh5NcGGutP3xmj9yt38tP-2boQmVVGaExFXIKZlznrCJba7JnEHI6SnyL6kEkatE4Raamqu3Gzf29O8eljphyJc3kNzPk-6r8UMbewjSW_vdty7BYMElyPIJ-BUq2twpL4y4NpFi0q7DwpeTgGjzgAHSGnauNkkfOfVFl1HjkuPuIj_Kn5wFBHktG78EpBBki8THgficl_YzoHvFhRBRR4rzYgJHG8OPjnVzbfB1uGqftk7OgaLEQGKZ4jmskMponnGu3nSYSzSO8qMwEDZmgjAljsgQVZkRNSI3IJNdMZqEJLUduruobMN3r9-wmkLqljFpKNbUpcrREZiZVQquwnqKiEFEZ6PiPx6aoP-7aYHRj74fUVOxRih1KcYFSGQ4mc15G1Tf-HL3mcJmMLCApQ2UMbFws0EGMTAUdOeSK4dbvs_Zg7qx92Yyb562LbZhnzs32B3YqMJ2_Du0OzJq3vDN43fVS-Al9ztgP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combinatorial+Iterative+Algorithms+for+Computing+the+Centroid+of+an+Interval+Type-2+Fuzzy+Set&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Liu%2C+Xianliang&rft.au=Wan%2C+Shuping&rft.date=2020-04-01&rft.pub=IEEE&rft.issn=1063-6706&rft.volume=28&rft.issue=4&rft.spage=607&rft.epage=617&rft_id=info:doi/10.1109%2FTFUZZ.2019.2911918&rft.externalDocID=8693778
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon