A Distributed Scheduling Algorithm for Underwater Acoustic Networks With Large Propagation Delays
Underwater acoustic (UWA) networks are a key form of communications for human exploration and activities in the oceanographic space of the earth. A fundamental issue of UWA communications is large propagation delays due to water medium, which has posed a grand challenge in UWA network protocol desig...
Saved in:
| Published in: | IEEE transactions on communications Vol. 65; no. 3; pp. 1131 - 1145 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.03.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0090-6778, 1558-0857 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Underwater acoustic (UWA) networks are a key form of communications for human exploration and activities in the oceanographic space of the earth. A fundamental issue of UWA communications is large propagation delays due to water medium, which has posed a grand challenge in UWA network protocol design. Conventional wisdom of addressing this issue is to live with this disadvantage by inserting a guard interval to introduce immunity to propagation delays. Recent advances in interference alignment (IA) open up a new direction to address this issue and promise a great potential to improve network throughput by exploiting large propagation delays. In this paper, we investigate propagation delay-based IA (PD-IA) in multi-hop UWA networks. We first develop a set of simple constraints to characterize PD-IA feasible region at the physical layer. Based on the set of PD-IA constraints, we develop a distributed PD-IA scheduling algorithm to greedily maximize interference overlapping possibilities in a multi-hop UWA network. Simulation results show that the proposed PD-IA algorithm yields higher throughput than an idealized benchmark algorithm without propagation delays, indicating that large propagation delays are not adversarial but beneficial for network throughput performance. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0090-6778 1558-0857 |
| DOI: | 10.1109/TCOMM.2017.2647940 |