Learning Latent Features With Infinite Nonnegative Binary Matrix Trifactorization

Nonnegative matrix factorization (NMF) has been widely exploited in many computational intelligence and pattern recognition problems. In particular, it can be used to extract latent features from data. However, previous NMF models often assume a fixed number of features, which are normally tuned and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on emerging topics in computational intelligence Ročník 2; číslo 6; s. 450 - 463
Hlavní autori: Yang, Xi, Huang, Kaizhu, Zhang, Rui, Hussain, Amir
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2471-285X, 2471-285X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Nonnegative matrix factorization (NMF) has been widely exploited in many computational intelligence and pattern recognition problems. In particular, it can be used to extract latent features from data. However, previous NMF models often assume a fixed number of features, which are normally tuned and searched using a trial and error approach. Learning binary features is also difficult, since the binary matrix posits a more challenging optimization problem. In this paper, we propose a new Bayesian model, termed the infinite nonnegative binary matrix trifactorization (iNBMT) model. This can automatically learn both latent binary features and feature numbers, based on the Indian buffet process (IBP). It exploits a trifactorization process that decomposes the nonnegative matrix into a product of three components: two binary matrices and a nonnegative real matrix. In contrast to traditional bifactorization, trifactorization can better reveal latent structures among samples and features. Specifically, an IBP prior is imposed on two infinite binary matrices, while a truncated Gaussian distribution is assumed on the weight matrix. To optimize the model, we develop a modified variational-Bayesian algorithm, with iteration complexity one order lower than the recently proposed maximization-expectation-IBP model <xref ref-type="bibr" rid="ref1">[1] and the correlated IBP-IBP model <xref ref-type="bibr" rid="ref2">[2] . A series of simulation experiments are carried out, both qualitatively and quantitatively, using benchmark feature extraction, reconstruction, and clustering tasks. Comparative results show that our proposed iNBMT model significantly outperforms state-of-the-art algorithms on a range of synthetic and real-world data. The new Bayesian model can thus serve as a benchmark technique for the computational intelligence research community.
AbstractList Nonnegative matrix factorization (NMF) has been widely exploited in many computational intelligence and pattern recognition problems. In particular, it can be used to extract latent features from data. However, previous NMF models often assume a fixed number of features, which are normally tuned and searched using a trial and error approach. Learning binary features is also difficult, since the binary matrix posits a more challenging optimization problem. In this paper, we propose a new Bayesian model, termed the infinite nonnegative binary matrix trifactorization (iNBMT) model. This can automatically learn both latent binary features and feature numbers, based on the Indian buffet process (IBP). It exploits a trifactorization process that decomposes the nonnegative matrix into a product of three components: two binary matrices and a nonnegative real matrix. In contrast to traditional bifactorization, trifactorization can better reveal latent structures among samples and features. Specifically, an IBP prior is imposed on two infinite binary matrices, while a truncated Gaussian distribution is assumed on the weight matrix. To optimize the model, we develop a modified variational-Bayesian algorithm, with iteration complexity one order lower than the recently proposed maximization-expectation-IBP model [1] and the correlated IBP-IBP model [2] . A series of simulation experiments are carried out, both qualitatively and quantitatively, using benchmark feature extraction, reconstruction, and clustering tasks. Comparative results show that our proposed iNBMT model significantly outperforms state-of-the-art algorithms on a range of synthetic and real-world data. The new Bayesian model can thus serve as a benchmark technique for the computational intelligence research community.
Nonnegative matrix factorization (NMF) has been widely exploited in many computational intelligence and pattern recognition problems. In particular, it can be used to extract latent features from data. However, previous NMF models often assume a fixed number of features, which are normally tuned and searched using a trial and error approach. Learning binary features is also difficult, since the binary matrix posits a more challenging optimization problem. In this paper, we propose a new Bayesian model, termed the infinite nonnegative binary matrix trifactorization (iNBMT) model. This can automatically learn both latent binary features and feature numbers, based on the Indian buffet process (IBP). It exploits a trifactorization process that decomposes the nonnegative matrix into a product of three components: two binary matrices and a nonnegative real matrix. In contrast to traditional bifactorization, trifactorization can better reveal latent structures among samples and features. Specifically, an IBP prior is imposed on two infinite binary matrices, while a truncated Gaussian distribution is assumed on the weight matrix. To optimize the model, we develop a modified variational-Bayesian algorithm, with iteration complexity one order lower than the recently proposed maximization-expectation-IBP model <xref ref-type="bibr" rid="ref1">[1] and the correlated IBP-IBP model <xref ref-type="bibr" rid="ref2">[2] . A series of simulation experiments are carried out, both qualitatively and quantitatively, using benchmark feature extraction, reconstruction, and clustering tasks. Comparative results show that our proposed iNBMT model significantly outperforms state-of-the-art algorithms on a range of synthetic and real-world data. The new Bayesian model can thus serve as a benchmark technique for the computational intelligence research community.
Author Hussain, Amir
Zhang, Rui
Yang, Xi
Huang, Kaizhu
Author_xml – sequence: 1
  givenname: Xi
  orcidid: 0000-0002-8600-2570
  surname: Yang
  fullname: Yang, Xi
  email: Xi.Yang@xjtlu.edu.cn
  organization: Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
– sequence: 2
  givenname: Kaizhu
  orcidid: 0000-0002-3034-9639
  surname: Huang
  fullname: Huang, Kaizhu
  email: Kaizhu.Huang@xjtlu.edu.cn
  organization: Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
– sequence: 3
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
  email: Rui.Zhang02@xjtlu.edu.cn
  organization: Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
– sequence: 4
  givenname: Amir
  orcidid: 0000-0002-8080-082X
  surname: Hussain
  fullname: Hussain, Amir
  email: ahu@cs.stir.ac.uk
  organization: Division of Computing Science & Maths, School of Natural Sciences, University of Stirling, Stirling, U.K
BookMark eNp9kFtLAzEQhYNUsNb-AX0J-Lx1ctlLHrVYLayKsKBvIc0mNaVmazYV9de7vSDig08zMOebOXOOUc833iB0SmBECIiL6roaT0cUSDGiBWSC8QPUpzwnCS3S596v_ggN23YBAFSkhKW8jx5Lo4J3fo5LFY2PeGJUXAfT4icXX_DUW-ddNPi-8d7MVXTvBl85r8InvlMxuA9cBWeVjk1wX9248Sfo0Kpla4b7OkDVpDN4m5QPN9PxZZno7nhMiGa2tgxqTWvNZ3YmBKczDUIXRpHMQgpc5EITUnNCiU1tntdpTmsugCpgA3S-W7sKzdvatFEumnXw3UVJqcgIFAJYpyp2Kh2atg3GSu3i1mYMyi0lAbmJUG4jlJsI5T7CDqV_0FVwr93j_0NnO8gZY36AglEQWcq-ARV7f0Q
CODEN ITETCU
CitedBy_id crossref_primary_10_3390_rs11212531
crossref_primary_10_1016_j_neunet_2020_06_003
crossref_primary_10_1016_j_neucom_2019_11_070
crossref_primary_10_1109_ACCESS_2019_2899721
crossref_primary_10_1109_TETCI_2021_3104330
crossref_primary_10_1007_s12559_018_9565_x
crossref_primary_10_1109_ACCESS_2020_3016981
crossref_primary_10_1016_j_comnet_2021_108088
crossref_primary_10_1177_01423312231217767
crossref_primary_10_1016_j_neucom_2019_01_031
crossref_primary_10_1186_s41044_018_0037_9
crossref_primary_10_3390_math9111189
Cites_doi 10.1162/neco.2007.19.7.1897
10.1038/44565
10.1007/s10994-013-5379-y
10.1016/j.neucom.2016.07.004
10.1109/CVPR.2017.217
10.1109/CVPRW.2016.144
10.1016/j.ijar.2016.12.010
10.1007/s00521-012-0956-8
10.1007/978-3-540-79452-3
10.1109/TPAMI.2014.2321387
10.1007/s10618-009-0145-2
10.1007/978-3-319-46687-3_65
10.1016/j.ipm.2009.12.007
10.1137/060649021
10.1145/1150402.1150420
10.1162/neco.2008.04-07-504
10.1016/j.eswa.2017.01.019
10.1109/TETCI.2017.2743219
10.1109/TIP.2014.2317981
10.1089/cmb.2012.0273
10.1109/TPAMI.2013.223
10.1007/978-3-540-74494-8_48
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TETCI.2018.2806934
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2471-285X
EndPage 463
ExternalDocumentID 10_1109_TETCI_2018_2806934
8320965
Genre orig-research
GrantInformation_xml – fundername: Key Program Special Fund in XJTLU
  grantid: KSF-A-01
– fundername: Natural Science Fund for Colleges and Universities in Jiangsu Province
  grantid: 17KJD520010
– fundername: Jiangsu University Natural Science Research Programme
  grantid: 17KJB520041
– fundername: National Natural Science Foundation of China
  grantid: 61473236
  funderid: 10.13039/501100001809
– fundername: UK Engineering and Physical Sciences Research Council
  grantid: EP/M026981/1
– fundername: Suzhou Science and Technology Program
  grantid: SYG201712; SZS201613
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-1c3fdf30dc2dc4bfb9942bc09c8ea16f0504979c11d4121f5f77d572d4902a03
IEDL.DBID RIE
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000679687200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2471-285X
IngestDate Sun Sep 07 03:42:49 EDT 2025
Tue Nov 18 20:44:38 EST 2025
Sat Nov 29 05:12:06 EST 2025
Wed Aug 27 02:53:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-1c3fdf30dc2dc4bfb9942bc09c8ea16f0504979c11d4121f5f77d572d4902a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8080-082X
0000-0002-3034-9639
0000-0002-8600-2570
PQID 2296108903
PQPubID 4437216
PageCount 14
ParticipantIDs proquest_journals_2296108903
crossref_citationtrail_10_1109_TETCI_2018_2806934
crossref_primary_10_1109_TETCI_2018_2806934
ieee_primary_8320965
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on emerging topics in computational intelligence
PublicationTitleAbbrev TETCI
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ghahramani (ref30) 0; 13
ref36
ref14
krause (ref22) 0; 11
ref31
ding (ref10) 0
ref11
huang (ref6) 2008
doshi-velez (ref16) 0
reed (ref1) 0
ref39
ref17
pan (ref27) 0
ref38
attias (ref29) 0; 12
ref18
lee (ref3) 0
griffiths (ref21) 0; 18
kulis (ref37) 2009; 10
luo (ref9) 0; 10
miller (ref19) 0
ref23
ref26
griffiths (ref32) 2011; 12
ref20
ref42
ref41
ref44
ref43
lee (ref4) 1999; 401
rai (ref33) 0
ref8
ref7
williamson (ref34) 0
ghahramani (ref28) 0; 12
doshi-velez (ref2) 0
nene (ref35) 1996
ref40
wang (ref12) 0
miller (ref25) 0; 22
görür (ref24) 0
li (ref5) 0
References_xml – start-page: 143
  year: 0
  ident: ref2
  article-title: Correlated non-parametric latent feature models
  publication-title: Proc 25th Conf Uncertainty Artif Intell
– ident: ref17
  doi: 10.1162/neco.2007.19.7.1897
– volume: 401
  start-page: 788
  year: 1999
  ident: ref4
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– start-page: 361
  year: 0
  ident: ref24
  article-title: A choice model with infinitely many latent features
  publication-title: Proc 23rd Int Conf Mach Learn
– ident: ref38
  doi: 10.1007/s10994-013-5379-y
– start-page: 403
  year: 0
  ident: ref19
  article-title: The phylogenetic indian buffet process: A non-exchangeable nonparametric prior for latent features
  publication-title: Proc 24th Conf Uncertainty Artif Intell
– volume: 12
  start-page: 1185
  year: 2011
  ident: ref32
  article-title: The indian buffet process: An introduction and review
  publication-title: J Mach Learn Res
– start-page: 924
  year: 0
  ident: ref34
  article-title: Dependent indian buffet processes
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref42
  doi: 10.1016/j.neucom.2016.07.004
– ident: ref44
  doi: 10.1109/CVPR.2017.217
– volume: 18
  start-page: 475
  year: 0
  ident: ref21
  article-title: Infinite latent feature models and the indian buffet process
  publication-title: Proc Adv Neural Inform Process Syst
– ident: ref15
  doi: 10.1109/CVPRW.2016.144
– ident: ref26
  doi: 10.1016/j.ijar.2016.12.010
– ident: ref39
  doi: 10.1007/s00521-012-0956-8
– start-page: 1553
  year: 0
  ident: ref12
  article-title: Fast nonnegative matrix tri-factorization for large-scale data co-clustering
  publication-title: Proc 22nd Int Joint Conf Artif Intell
– year: 2008
  ident: ref6
  publication-title: Machine Learning Modeling Data Locally and Globally
  doi: 10.1007/978-3-540-79452-3
– start-page: 1013
  year: 0
  ident: ref1
  article-title: Scaling the indian buffet process via submodular maximization
  publication-title: Proc 30th Int Conf Mach Learn
– ident: ref31
  doi: 10.1109/TPAMI.2014.2321387
– volume: 11
  start-page: 231
  year: 0
  ident: ref22
  article-title: Identifying protein complexes in high-throughput protein interaction screens using an infinite latent feature model
  publication-title: Proc Pacific Symp Biocomputing
– volume: 10
  start-page: 341
  year: 2009
  ident: ref37
  article-title: Low-rank kernel learning with Bregman matrix divergences
  publication-title: J Mach Learn Res
– ident: ref11
  doi: 10.1007/s10618-009-0145-2
– volume: 12
  start-page: 449
  year: 0
  ident: ref28
  article-title: Variational inference for Bayesian mixtures of factor analysers
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref18
  doi: 10.1007/978-3-319-46687-3_65
– ident: ref7
  doi: 10.1016/j.ipm.2009.12.007
– ident: ref36
  doi: 10.1137/060649021
– ident: ref40
  doi: 10.1145/1150402.1150420
– start-page: 149
  year: 0
  ident: ref5
  article-title: Nonnegative matrix factorizations for clustering: A survey
  publication-title: Proc Data Clustering Algorithms Appl
– volume: 10
  start-page: 1273
  year: 0
  ident: ref9
  article-title: An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems
  publication-title: IEEE Trans Ind Informat
– ident: ref23
  doi: 10.1162/neco.2008.04-07-504
– start-page: 126
  year: 0
  ident: ref10
  article-title: Orthogonal nonnegative matrix tri-factorizations for clustering
  publication-title: Proc Int Conf on Knowledge Discovery and Data Mining
– ident: ref13
  doi: 10.1016/j.eswa.2017.01.019
– start-page: 556
  year: 0
  ident: ref3
  article-title: Algorithms for non-negative matrix factorization
  publication-title: Proc Adv Neural Inform Process Syst Conf
– ident: ref8
  doi: 10.1109/TETCI.2017.2743219
– ident: ref14
  doi: 10.1109/TIP.2014.2317981
– volume: 22
  start-page: 1276
  year: 0
  ident: ref25
  article-title: Nonparametric latent feature models for link prediction
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1518
  year: 0
  ident: ref33
  article-title: Multi-label prediction via sparse infinite CCA
  publication-title: Proc Adv Neural Inf Process Syst Conf
– ident: ref41
  doi: 10.1089/cmb.2012.0273
– start-page: 137
  year: 0
  ident: ref16
  article-title: Variational inference for the indian buffet process
  publication-title: Proc Int Conf Artif Intell Statist
– year: 1996
  ident: ref35
  article-title: Columbia object image library (coil-20)
– volume: 12
  start-page: 209
  year: 0
  ident: ref29
  article-title: A variational Baysian framework for graphical models
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref43
  doi: 10.1109/TPAMI.2013.223
– ident: ref20
  doi: 10.1007/978-3-540-74494-8_48
– volume: 13
  start-page: 507
  year: 0
  ident: ref30
  article-title: Propagation algorithms for variational Bayesian learning
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 2027
  year: 0
  ident: ref27
  article-title: Robust non-negative dictionary learning
  publication-title: Proc 28th Conf Artif Intell
SSID ssj0002951354
Score 2.1613035
Snippet Nonnegative matrix factorization (NMF) has been widely exploited in many computational intelligence and pattern recognition problems. In particular, it can be...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 450
SubjectTerms Algorithms
Artificial intelligence
Bayes methods
Bayesian analysis
Benchmarks
Clustering
Clustering methods
Complexity theory
Computational intelligence
Computational modeling
Computer simulation
Feature extraction
Gaussian distribution
Indian Buffet Process prior
Infinite latent feature model
Infinite non-negative binary matrix tri-factori-zation
Iterative methods
Learning
Matrix decomposition
Normal distribution
Optimization
Pattern recognition
Simulation
Title Learning Latent Features With Infinite Nonnegative Binary Matrix Trifactorization
URI https://ieeexplore.ieee.org/document/8320965
https://www.proquest.com/docview/2296108903
Volume 2
WOSCitedRecordID wos000679687200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2471-285X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951354
  issn: 2471-285X
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zePDiD6Y4nZKDN-3WpMmSHFUcDnQoFNyttPkxB9LJ1ol_vkmaFUQRvPWQpM2XNO9L8t73ALiQXCG75rGo4FhHhCoWWaNXRNRYci-NMJgpn2yCTSZ8OhVPLXDVxMJorb3zme67R3-XrxZy7Y7KBnb2ObGSLbDF2LCO1WrOU7ClCgklm7iYWAzSu_R27Jy3eN9dH4qEfLM9PpnKjxXYm5XR3v8-aB_sBvoIr-vxPgAtXXbAcxBJncEHyxzLCjpet7b7aPgyr17huDRzxyzhxDm1zLzSN7zxcbjw0Sn0f8J0Oa8T74SozEOQjmy_7qOQKiGStuNVhGRilEliJbGSpDCFEAQXMhaS6xwNTUztToAJiZAiCCNDDWOKMqyIiHEeJ0egXS5KfQwgF4YhrKi1bDmhhvChoFRLnhv7BkumugBtMMxkkBF32SzeMr-diEXmcc8c7lnAvQsumzrvtYjGn6U7DummZAC5C3qbocrCf7bKMBaW_3ERJye_1zoFO67t2gGlB9rVcq3PwLb8qOar5bmfQl_k98Ud
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60CnrxgYr1mYM3XU2ySZMcVRSLtSgs6G3p5lELskrdij_fJLstiCJ420NCNl8e8yWZ-QbgSEtD_J4nkkJSmzBuROKNXpFw58m9dspRYWKyCdHvy6cndT8HJ7NYGGttdD6zp-EzvuWbVz0JV2VnfvYFsZJ5WOCMUVxHa81uVKgnCyln08gYrM6yq-yyG9y35Gl4QFQp-2Z9YjqVH3twNCzXq__7pTVYaQgkOq9HfB3mbLkBD41M6hD1PHcsKxSY3cSfpNHjqHpG3dKNArdE_eDWMoxa3-giRuKiu6DR_4my8ahOvdPEZW5Cdu37dZM0yRIS7TteJUSnzrgUG02NZoUrlGK00FhpaQek4zD3ZwGhNCGGEUocd0IYLqhhCtMBTregVb6WdhuQVE4Qari3bQPGHZMdxbnVcuB8C55OtYFMMcx1IyQe8lm85PFAgVUecc8D7nmDexuOZ3XeahmNP0tvBKRnJRuQ27A3Haq8WWnvOaXKM0CpcLrze61DWLrJ7np5r9u_3YXl0E7tjrIHrWo8sfuwqD-q0fv4IE6nL09ryGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Latent+Features+With+Infinite+Nonnegative+Binary+Matrix+Trifactorization&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Yang%2C+Xi&rft.au=Huang%2C+Kaizhu&rft.au=Zhang%2C+Rui&rft.au=Hussain%2C+Amir&rft.date=2018-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2471-285X&rft.volume=2&rft.issue=6&rft.spage=450&rft_id=info:doi/10.1109%2FTETCI.2018.2806934&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon