A Pythagorean-Type Fuzzy Deep Denoising Autoencoder for Industrial Accident Early Warning

Early warning is crucial for preventing industrial accidents and mitigating damage, but current methods are often time-consuming, error-prone, and incompetent to deal with uncertainty. This paper presents a fuzzy deep neural network for early warning of industrial accidents, which equips the classic...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on fuzzy systems Ročník 25; číslo 6; s. 1561 - 1575
Hlavní autori: Zheng, Yu-Jun, Chen, Sheng-Yong, Xue, Yu, Xue, Jin-Yun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.12.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1063-6706, 1941-0034
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Early warning is crucial for preventing industrial accidents and mitigating damage, but current methods are often time-consuming, error-prone, and incompetent to deal with uncertainty. This paper presents a fuzzy deep neural network for early warning of industrial accidents, which equips the classical deep denoising autoencoder (DDAE) model with Pythagorean-type fuzzy parameters in order to enhance the model's representation ability and robustness. To efficiently train the fuzzy deep model, we propose a hybrid algorithm combining Hessian-free optimization and biogeography-based optimization metaheuristic to balance global search and local search. Experiments on datasets from several industrial zones in China show that the proposed Pythagorean-type fuzzy DDAE (PFDDAE) can achieve much higher accuracy of accident risk classification than the classical DDAE and the fuzzy DDAE using regular fuzzy parameters, and the proposed hybrid learning algorithm exhibits significant performance advantage over some other learning algorithms in training PFDDAE. In particular, a test on the 2014 Kunshan aluminum dust explosion accident shows that the deep learning model would be very likely to prevent the accident if it was adopted in advance.
AbstractList Early warning is crucial for preventing industrial accidents and mitigating damage, but current methods are often time-consuming, error-prone, and incompetent to deal with uncertainty. This paper presents a fuzzy deep neural network for early warning of industrial accidents, which equips the classical deep denoising autoencoder (DDAE) model with Pythagorean-type fuzzy parameters in order to enhance the model's representation ability and robustness. To efficiently train the fuzzy deep model, we propose a hybrid algorithm combining Hessian-free optimization and biogeography-based optimization metaheuristic to balance global search and local search. Experiments on datasets from several industrial zones in China show that the proposed Pythagorean-type fuzzy DDAE (PFDDAE) can achieve much higher accuracy of accident risk classification than the classical DDAE and the fuzzy DDAE using regular fuzzy parameters, and the proposed hybrid learning algorithm exhibits significant performance advantage over some other learning algorithms in training PFDDAE. In particular, a test on the 2014 Kunshan aluminum dust explosion accident shows that the deep learning model would be very likely to prevent the accident if it was adopted in advance.
Author Yu-Jun Zheng
Sheng-Yong Chen
Yu Xue
Jin-Yun Xue
Author_xml – sequence: 1
  givenname: Yu-Jun
  orcidid: 0000-0002-6095-6325
  surname: Zheng
  fullname: Zheng, Yu-Jun
– sequence: 2
  givenname: Sheng-Yong
  surname: Chen
  fullname: Chen, Sheng-Yong
– sequence: 3
  givenname: Yu
  surname: Xue
  fullname: Xue, Yu
– sequence: 4
  givenname: Jin-Yun
  surname: Xue
  fullname: Xue, Jin-Yun
BookMark eNp9kD1PwzAQhi1UJD7_ACyWmFPOdmLHYwUtICHB0ArRJXKSS3FV7OI4Q_rrCRQxMLDce8P73EnPCRk575CQCwZjxkBfz2eL5XLMgakxVyKXkB2QY6ZTlgCIdDTsIEUiFcgjctK2awCWZiw_Jq8T-tzHN7PyAY1L5v0W6azb7Xp6i7gdhvO2tW5FJ1306CpfY6CND_TB1V0bgzUbOqkqW6OLdGrCpqcvJriBOCOHjdm0eP6Tp2Qxm85v7pPHp7uHm8ljUnGdxYTpUmfIsSylyo1QWjRoOKsUl1IbVSFo5MLUUolapZyXKqsbxDQ3dc24BHFKrvZ3t8F_dNjGYu274IaXBdMKFGMsy4dWvm9VwbdtwKaobDTReheDsZuCQfElsvgWWXyJLH5EDij_g26DfTeh_x-63EMWEX-BHEBxDeITSFWBfw
CODEN IEFSEV
CitedBy_id crossref_primary_10_1109_TNNLS_2023_3291371
crossref_primary_10_1016_j_eswa_2020_113244
crossref_primary_10_1007_s00500_017_2916_9
crossref_primary_10_3233_JIFS_191763
crossref_primary_10_1002_int_22075
crossref_primary_10_1109_TFUZZ_2019_2902111
crossref_primary_10_1109_TFUZZ_2020_2966167
crossref_primary_10_1016_j_ress_2024_110203
crossref_primary_10_1109_TFUZZ_2021_3098339
crossref_primary_10_3233_JIFS_182532
crossref_primary_10_1080_21642583_2025_2507261
crossref_primary_10_1007_s00500_018_3099_8
crossref_primary_10_1007_s10845_020_01631_9
crossref_primary_10_1016_j_inffus_2023_102067
crossref_primary_10_1109_TFUZZ_2023_3347699
crossref_primary_10_1109_ACCESS_2018_2856270
crossref_primary_10_1002_int_22126
crossref_primary_10_1016_j_ijepes_2021_107852
crossref_primary_10_1016_j_jmsy_2022_08_003
crossref_primary_10_1016_j_ijepes_2020_106429
crossref_primary_10_1155_2022_6274230
crossref_primary_10_1002_int_22281
crossref_primary_10_1016_j_bspc_2019_101732
crossref_primary_10_1109_TFUZZ_2019_2946520
crossref_primary_10_1109_ACCESS_2024_3396351
crossref_primary_10_3389_fpls_2023_1139094
crossref_primary_10_1109_TII_2018_2870879
crossref_primary_10_3390_ijerph16050838
crossref_primary_10_3390_math10132157
crossref_primary_10_1016_j_ins_2021_03_060
crossref_primary_10_1007_s00521_021_06807_9
crossref_primary_10_1109_ACCESS_2020_2997255
crossref_primary_10_1109_TFUZZ_2022_3165690
crossref_primary_10_1007_s10462_022_10188_3
crossref_primary_10_1109_TFUZZ_2022_3191359
crossref_primary_10_1109_TII_2018_2868687
crossref_primary_10_1016_j_ins_2019_07_035
crossref_primary_10_1109_TEVC_2022_3164260
crossref_primary_10_1109_TSC_2022_3177316
crossref_primary_10_1109_TCYB_2022_3164412
crossref_primary_10_1109_TFUZZ_2024_3425495
crossref_primary_10_1016_j_powtec_2022_117941
crossref_primary_10_1109_TCSS_2022_3197421
crossref_primary_10_1080_19393555_2024_2338438
crossref_primary_10_1109_TETC_2021_3085337
crossref_primary_10_1016_j_swevo_2019_100561
crossref_primary_10_1016_j_neunet_2018_02_015
crossref_primary_10_3390_mi13040611
crossref_primary_10_3390_buildings12060706
crossref_primary_10_1016_j_swevo_2022_101208
crossref_primary_10_1016_j_ress_2018_08_010
crossref_primary_10_1016_j_inffus_2023_101987
crossref_primary_10_1016_j_jksuci_2023_01_020
crossref_primary_10_1145_3369798
Cites_doi 10.1016/j.autcon.2012.11.001
10.1016/j.proeng.2012.08.120
10.1007/s00500-017-2547-1
10.1007/0-306-48056-5_16
10.1145/1390156.1390294
10.1109/TPAMI.2012.269
10.1109/FUZZ-IEEE.2015.7337941
10.1023/A:1008202821328
10.1109/ICASSP.2015.7178918
10.1016/j.ssci.2005.08.012
10.1016/0165-0114(81)90031-2
10.4028/www.scientific.net/AMM.501-504.2411
10.1109/TFUZZ.2010.2098879
10.1007/978-81-322-1602-5_17
10.1145/1553374.1553505
10.1109/TNNLS.2016.2609437
10.1109/TFUZZ.2013.2278989
10.1016/S0898-1221(01)00277-2
10.1016/0165-0114(95)00015-D
10.1142/SECE
10.1023/A:1024260130050
10.1002/int.21676
10.2307/1190975
10.1016/j.cor.2014.10.008
10.1109/TFUZZ.2014.2337938
10.1109/TPAMI.2011.108
10.1007/s00500-013-1209-1
10.1007/978-81-322-1952-1_15
10.1109/TFUZZ.2014.2315655
10.1016/j.proeps.2009.09.205
10.1109/91.784209
10.1109/TPAMI.2014.2353635
10.1145/2598394.2602287
10.1016/j.asoc.2015.12.020
10.1016/j.neucom.2016.11.018
10.1016/j.ssci.2011.08.042
10.1109/COMPSAC.2015.63
10.1109/TSC.2015.2401598
10.1016/0098-1354(95)00259-6
10.1016/S0165-0114(86)80034-3
10.1016/j.asoc.2015.08.043
10.1126/science.1127647
10.1109/TPAMI.2008.53
10.1109/21.256541
10.1016/S0377-2217(99)00435-X
10.1007/978-3-642-29584-3
10.1016/j.jlp.2015.11.013
10.1016/j.ress.2014.08.003
10.1109/TEVC.2008.919004
10.1109/TFUZZ.2015.2406889
10.1109/CFIS.2015.7391664
10.1016/j.ress.2013.01.006
10.1007/s00521-015-1916-x
10.1016/j.cor.2014.04.013
10.1016/j.asoc.2014.09.041
10.3846/13923730.2014.890662
10.1016/S0020-0255(02)00181-0
10.1109/SYSoSE.2012.6384140
10.1016/S0019-9958(65)90241-X
10.1109/IFSA-NAFIPS.2013.6608375
10.1162/neco.2006.18.7.1527
10.22260/ISARC2009/0035
10.1016/j.ecolind.2017.06.037
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2017.2738605
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 1575
ExternalDocumentID 10_1109_TFUZZ_2017_2738605
8007290
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61325019; 61472167; 61473263; U1509207
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c295t-19b95e2ebb678a3793fea21c72669a7ce09e23ad673d7422b75dfee48add12603
IEDL.DBID RIE
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000417559300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Mon Jun 30 04:38:50 EDT 2025
Tue Nov 18 22:21:55 EST 2025
Sat Nov 29 03:12:36 EST 2025
Tue Aug 26 17:07:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-19b95e2ebb678a3793fea21c72669a7ce09e23ad673d7422b75dfee48add12603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6095-6325
PQID 1970711158
PQPubID 85428
PageCount 15
ParticipantIDs proquest_journals_1970711158
ieee_primary_8007290
crossref_citationtrail_10_1109_TFUZZ_2017_2738605
crossref_primary_10_1109_TFUZZ_2017_2738605
PublicationCentury 2000
PublicationDate 2017-Dec.
2017-12-00
20171201
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-Dec.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
cao (ref10) 2007; 13
ref11
ref54
ref17
ref16
ref19
ref18
aldrich (ref2) 1997
wang (ref22) 2009; 1
ref51
ref50
bengio (ref42) 0
khosla (ref43) 0
ref46
ref45
ref48
ref47
ref41
ref44
ref49
ref7
ref9
ref4
ref3
tettamanzi (ref57) 2013
ref6
ref40
salakhutdinov (ref27) 2009
ref35
ref34
ref37
chen (ref5) 2011; 27
ref36
ref75
ref31
ref74
ref30
ref33
ref32
ref1
ref39
martens (ref62) 0
guo (ref21) 2012; 32
ref71
bergstra (ref70) 0
ref73
ref72
vincent (ref38) 2010; 11
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref65
ref28
dodshon (ref8) 0
ref29
ref60
ref61
References_xml – volume: 11
  start-page: 3371
  year: 2010
  ident: ref38
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: ref9
  doi: 10.1016/j.autcon.2012.11.001
– ident: ref6
  doi: 10.1016/j.proeng.2012.08.120
– ident: ref71
  doi: 10.1007/s00500-017-2547-1
– ident: ref75
  doi: 10.1007/0-306-48056-5_16
– ident: ref34
  doi: 10.1145/1390156.1390294
– ident: ref28
  doi: 10.1109/TPAMI.2012.269
– start-page: 153
  year: 0
  ident: ref42
  article-title: Greedy layer-wise training of deep networks
  publication-title: Proc 19th Int Conf Neural Inf Process Syst
– ident: ref53
  doi: 10.1109/FUZZ-IEEE.2015.7337941
– ident: ref73
  doi: 10.1023/A:1008202821328
– ident: ref58
  doi: 10.1109/ICASSP.2015.7178918
– ident: ref66
  doi: 10.1016/j.ssci.2005.08.012
– ident: ref47
  doi: 10.1016/0165-0114(81)90031-2
– ident: ref7
  doi: 10.4028/www.scientific.net/AMM.501-504.2411
– ident: ref67
  doi: 10.1109/TFUZZ.2010.2098879
– ident: ref52
  doi: 10.1007/978-81-322-1602-5_17
– start-page: 2546
  year: 0
  ident: ref70
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Proc Annu Conf Neural Inf Process Syst
– ident: ref39
  doi: 10.1145/1553374.1553505
– ident: ref60
  doi: 10.1109/TNNLS.2016.2609437
– ident: ref36
  doi: 10.1109/TFUZZ.2013.2278989
– ident: ref49
  doi: 10.1016/S0898-1221(01)00277-2
– ident: ref41
  doi: 10.1016/0165-0114(95)00015-D
– ident: ref14
  doi: 10.1142/SECE
– ident: ref24
  doi: 10.1023/A:1024260130050
– year: 1997
  ident: ref2
  publication-title: Safety First Technology Labor and Business in the Building of American Work Safety 1870-1939
– ident: ref45
  doi: 10.1002/int.21676
– ident: ref65
  doi: 10.2307/1190975
– ident: ref74
  doi: 10.1016/j.cor.2014.10.008
– volume: 32
  start-page: 96
  year: 2012
  ident: ref21
  article-title: Classification model of accident early-warning for coal mine based on AHP-fuzzy synthetic evaluation and its application
  publication-title: Mining research and development
– ident: ref18
  doi: 10.1109/TFUZZ.2014.2337938
– ident: ref12
  doi: 10.1109/TPAMI.2011.108
– year: 2013
  ident: ref57
  publication-title: Soft Computing Integrating Evolutionary Neural and Fuzzy Systems
– ident: ref63
  doi: 10.1007/s00500-013-1209-1
– ident: ref51
  doi: 10.1007/978-81-322-1952-1_15
– ident: ref17
  doi: 10.1109/TFUZZ.2014.2315655
– volume: 1
  start-page: 1332
  year: 2009
  ident: ref22
  article-title: Study on coalface stray current safety early warning based on ANFIS
  publication-title: Procedia Earth and Planetary Science 1
  doi: 10.1016/j.proeps.2009.09.205
– ident: ref48
  doi: 10.1109/91.784209
– ident: ref55
  doi: 10.1109/TPAMI.2014.2353635
– ident: ref68
  doi: 10.1145/2598394.2602287
– ident: ref37
  doi: 10.1016/j.asoc.2015.12.020
– volume: 27
  start-page: 159
  year: 2011
  ident: ref5
  article-title: Design of early-warning mechanism of work safety for chemical industry park based on immune mechanism
  publication-title: China Safety Science Journal
– ident: ref31
  doi: 10.1016/j.neucom.2016.11.018
– ident: ref20
  doi: 10.1016/j.ssci.2011.08.042
– ident: ref56
  doi: 10.1109/COMPSAC.2015.63
– ident: ref13
  doi: 10.1109/TSC.2015.2401598
– start-page: 352
  year: 0
  ident: ref8
  article-title: Application of the bow tie analysis technique to enhancing the identification of risk controls during accident investigation activities
  publication-title: Proceedings of IntI Ergonomics Assoc
– ident: ref40
  doi: 10.1016/0098-1354(95)00259-6
– ident: ref44
  doi: 10.1016/S0165-0114(86)80034-3
– ident: ref59
  doi: 10.1016/j.asoc.2015.08.043
– ident: ref25
  doi: 10.1126/science.1127647
– ident: ref15
  doi: 10.1109/TPAMI.2008.53
– ident: ref23
  doi: 10.1109/21.256541
– ident: ref69
  doi: 10.1016/S0377-2217(99)00435-X
– ident: ref46
  doi: 10.1007/978-3-642-29584-3
– ident: ref72
  doi: 10.1016/j.jlp.2015.11.013
– ident: ref16
  doi: 10.1016/j.ress.2014.08.003
– ident: ref61
  doi: 10.1109/TEVC.2008.919004
– ident: ref29
  doi: 10.1109/TFUZZ.2015.2406889
– ident: ref30
  doi: 10.1109/CFIS.2015.7391664
– ident: ref54
  doi: 10.1016/j.ress.2013.01.006
– ident: ref33
  doi: 10.1007/s00521-015-1916-x
– ident: ref64
  doi: 10.1016/j.cor.2014.04.013
– start-page: 448
  year: 2009
  ident: ref27
  article-title: Deep Boltzmann machines
  publication-title: Proc Artif Intell Statist
– ident: ref1
  doi: 10.1016/j.asoc.2014.09.041
– ident: ref3
  doi: 10.3846/13923730.2014.890662
– ident: ref50
  doi: 10.1016/S0020-0255(02)00181-0
– ident: ref11
  doi: 10.1109/SYSoSE.2012.6384140
– ident: ref19
  doi: 10.1016/S0019-9958(65)90241-X
– start-page: 689
  year: 0
  ident: ref43
  article-title: Multimodal deep learning
  publication-title: Proc 28th Int Conf Mach Learn
– ident: ref35
  doi: 10.1109/IFSA-NAFIPS.2013.6608375
– ident: ref26
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref4
  doi: 10.22260/ISARC2009/0035
– start-page: 735
  year: 0
  ident: ref62
  article-title: Deep learning via hessian-free optimization
  publication-title: Proc 27th Int Conf Mach Learn
– volume: 13
  start-page: 296
  year: 2007
  ident: ref10
  article-title: Risk monitoring and early-warning technology of coal mine production
  publication-title: Journal of Coal Science and Engineering
– ident: ref32
  doi: 10.1016/j.ecolind.2017.06.037
SSID ssj0014518
Score 2.4868631
Snippet Early warning is crucial for preventing industrial accidents and mitigating damage, but current methods are often time-consuming, error-prone, and incompetent...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1561
SubjectTerms Accident early warning
Accidents
Algorithms
Aluminum
Artificial neural networks
biogeography-based optimization (BBO)
Damage prevention
deep denoising autoencoder (DDAE)
deep learning
evolutionary learning
Explosions
Fuzzy logic
Fuzzy sets
Heuristic methods
Industrial accidents
Machine learning
Mathematical models
Neural networks
Noise reduction
Optimization
Order parameters
pythagorean fuzzy set (PFS)
Robustness (mathematics)
Uncertainty
Title A Pythagorean-Type Fuzzy Deep Denoising Autoencoder for Industrial Accident Early Warning
URI https://ieeexplore.ieee.org/document/8007290
https://www.proquest.com/docview/1970711158
Volume 25
WOSCitedRecordID wos000417559300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH7U4kEP7mK1Sg7eNDpbJpNjUYsHKT1UXC5DllctyLTUqaC_3iQzrYIieBnmkIQw3-QtSd73ARxnSnNtTSJNhjKmiUg4FSlGVNnoOmOJkSrwhcI3vNfL7u9FvwGni1oYRPSXz_DMvfqzfDPWM7dVdp55nmuboC9xzqtarcWJQcLCquwtjWnKg3ReIBOI80H39vHR3eLiZ64QJXVSdd-ckFdV-WGKvX_prv9vZhuwVseRpFMBvwkNLLZgfa7RQOoluwWr3wgHt-GhQ_rv5bN8suPLgroklHRnHx_v5BJxYh_FeOQ2D0hnVo4dxaWxY9mwlnwpfJCO1k6ItCSeG5ncVVsrO3DbvRpcXNNaXIHqSLCShkIJhhEqZd2VjO0yHaKMQs2txxaSawwERrE0KY-NTZ8jxZkZIiaZNYihTYLiXWgW4wL3gJiAG0cwmjlJ8UAFkhk11IyhjQ0dm1ALwvnXznXNPO4EMF5yn4EEIvcI5Q6hvEaoBSeLPpOKd-PP1tsOk0XLGo4WtOeg5vXSfM1DYadkLTzL9n_vdQArbuzqzkobmuV0hoewrN_K0ev0yP91n-ml09U
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH6ICurBXRzXHLxptFua5jiog-I4eBhxuZQsb3RAOqIdQX-9SdoZBUXwUnpI0tKveUuS930Ae5nSXFuTSJOejGkiEk5FihFVNrrOWGKkCnyhcJt3OtntrbiagINxLQwi-sNneOhu_V6-GeihWyo7yjzPtU3Qp1iSRGFVrTXeM0hYWBW-pTFNeZCOSmQCcdRtXd_fu3Nc_NCVoqROrO6bG_K6Kj-MsfcwrYX_vdsizNeRJGlW0C_BBBbLsDBSaSD1pF2GuW-Ugytw1yRX7-WjfLDjy4K6NJS0hh8f7-QE8dleikHfLR-Q5rAcOJJLY8eygS350vggTa2dFGlJPDsyuakWV1bhunXaPT6jtbwC1ZFgJQ2FEgwjVMo6LBnbidpDGYWaW58tJNcYCIxiaVIeG5tAR4oz00NMMmsSQ5sGxWswWQwKXAdiAm4cxWjmRMUDFUhmVE8zhjY6dHxCDQhHXzvXNfe4k8B4yn0OEojcI5Q7hPIaoQbsj_s8V8wbf7ZecZiMW9ZwNGBrBGpeT87XPBT2layNZ9nG7712Yease9nO2-edi02Ydc-pTrBswWT5MsRtmNZvZf_1Zcf_gZ8XE9cc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Pythagorean-Type+Fuzzy+Deep+Denoising+Autoencoder+for+Industrial+Accident+Early+Warning&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Zheng%2C+Yu-Jun&rft.au=Chen%2C+Sheng-Yong&rft.au=Xue%2C+Yu&rft.au=Xue%2C+Jin-Yun&rft.date=2017-12-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=25&rft.issue=6&rft.spage=1561&rft.epage=1575&rft_id=info:doi/10.1109%2FTFUZZ.2017.2738605&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2017_2738605
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon