A Pythagorean-Type Fuzzy Deep Denoising Autoencoder for Industrial Accident Early Warning
Early warning is crucial for preventing industrial accidents and mitigating damage, but current methods are often time-consuming, error-prone, and incompetent to deal with uncertainty. This paper presents a fuzzy deep neural network for early warning of industrial accidents, which equips the classic...
Uložené v:
| Vydané v: | IEEE transactions on fuzzy systems Ročník 25; číslo 6; s. 1561 - 1575 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.12.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1063-6706, 1941-0034 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Early warning is crucial for preventing industrial accidents and mitigating damage, but current methods are often time-consuming, error-prone, and incompetent to deal with uncertainty. This paper presents a fuzzy deep neural network for early warning of industrial accidents, which equips the classical deep denoising autoencoder (DDAE) model with Pythagorean-type fuzzy parameters in order to enhance the model's representation ability and robustness. To efficiently train the fuzzy deep model, we propose a hybrid algorithm combining Hessian-free optimization and biogeography-based optimization metaheuristic to balance global search and local search. Experiments on datasets from several industrial zones in China show that the proposed Pythagorean-type fuzzy DDAE (PFDDAE) can achieve much higher accuracy of accident risk classification than the classical DDAE and the fuzzy DDAE using regular fuzzy parameters, and the proposed hybrid learning algorithm exhibits significant performance advantage over some other learning algorithms in training PFDDAE. In particular, a test on the 2014 Kunshan aluminum dust explosion accident shows that the deep learning model would be very likely to prevent the accident if it was adopted in advance. |
|---|---|
| AbstractList | Early warning is crucial for preventing industrial accidents and mitigating damage, but current methods are often time-consuming, error-prone, and incompetent to deal with uncertainty. This paper presents a fuzzy deep neural network for early warning of industrial accidents, which equips the classical deep denoising autoencoder (DDAE) model with Pythagorean-type fuzzy parameters in order to enhance the model's representation ability and robustness. To efficiently train the fuzzy deep model, we propose a hybrid algorithm combining Hessian-free optimization and biogeography-based optimization metaheuristic to balance global search and local search. Experiments on datasets from several industrial zones in China show that the proposed Pythagorean-type fuzzy DDAE (PFDDAE) can achieve much higher accuracy of accident risk classification than the classical DDAE and the fuzzy DDAE using regular fuzzy parameters, and the proposed hybrid learning algorithm exhibits significant performance advantage over some other learning algorithms in training PFDDAE. In particular, a test on the 2014 Kunshan aluminum dust explosion accident shows that the deep learning model would be very likely to prevent the accident if it was adopted in advance. |
| Author | Yu-Jun Zheng Sheng-Yong Chen Yu Xue Jin-Yun Xue |
| Author_xml | – sequence: 1 givenname: Yu-Jun orcidid: 0000-0002-6095-6325 surname: Zheng fullname: Zheng, Yu-Jun – sequence: 2 givenname: Sheng-Yong surname: Chen fullname: Chen, Sheng-Yong – sequence: 3 givenname: Yu surname: Xue fullname: Xue, Yu – sequence: 4 givenname: Jin-Yun surname: Xue fullname: Xue, Jin-Yun |
| BookMark | eNp9kD1PwzAQhi1UJD7_ACyWmFPOdmLHYwUtICHB0ArRJXKSS3FV7OI4Q_rrCRQxMLDce8P73EnPCRk575CQCwZjxkBfz2eL5XLMgakxVyKXkB2QY6ZTlgCIdDTsIEUiFcgjctK2awCWZiw_Jq8T-tzHN7PyAY1L5v0W6azb7Xp6i7gdhvO2tW5FJ1306CpfY6CND_TB1V0bgzUbOqkqW6OLdGrCpqcvJriBOCOHjdm0eP6Tp2Qxm85v7pPHp7uHm8ljUnGdxYTpUmfIsSylyo1QWjRoOKsUl1IbVSFo5MLUUolapZyXKqsbxDQ3dc24BHFKrvZ3t8F_dNjGYu274IaXBdMKFGMsy4dWvm9VwbdtwKaobDTReheDsZuCQfElsvgWWXyJLH5EDij_g26DfTeh_x-63EMWEX-BHEBxDeITSFWBfw |
| CODEN | IEFSEV |
| CitedBy_id | crossref_primary_10_1109_TNNLS_2023_3291371 crossref_primary_10_1016_j_eswa_2020_113244 crossref_primary_10_1007_s00500_017_2916_9 crossref_primary_10_3233_JIFS_191763 crossref_primary_10_1002_int_22075 crossref_primary_10_1109_TFUZZ_2019_2902111 crossref_primary_10_1109_TFUZZ_2020_2966167 crossref_primary_10_1016_j_ress_2024_110203 crossref_primary_10_1109_TFUZZ_2021_3098339 crossref_primary_10_3233_JIFS_182532 crossref_primary_10_1080_21642583_2025_2507261 crossref_primary_10_1007_s00500_018_3099_8 crossref_primary_10_1007_s10845_020_01631_9 crossref_primary_10_1016_j_inffus_2023_102067 crossref_primary_10_1109_TFUZZ_2023_3347699 crossref_primary_10_1109_ACCESS_2018_2856270 crossref_primary_10_1002_int_22126 crossref_primary_10_1016_j_ijepes_2021_107852 crossref_primary_10_1016_j_jmsy_2022_08_003 crossref_primary_10_1016_j_ijepes_2020_106429 crossref_primary_10_1155_2022_6274230 crossref_primary_10_1002_int_22281 crossref_primary_10_1016_j_bspc_2019_101732 crossref_primary_10_1109_TFUZZ_2019_2946520 crossref_primary_10_1109_ACCESS_2024_3396351 crossref_primary_10_3389_fpls_2023_1139094 crossref_primary_10_1109_TII_2018_2870879 crossref_primary_10_3390_ijerph16050838 crossref_primary_10_3390_math10132157 crossref_primary_10_1016_j_ins_2021_03_060 crossref_primary_10_1007_s00521_021_06807_9 crossref_primary_10_1109_ACCESS_2020_2997255 crossref_primary_10_1109_TFUZZ_2022_3165690 crossref_primary_10_1007_s10462_022_10188_3 crossref_primary_10_1109_TFUZZ_2022_3191359 crossref_primary_10_1109_TII_2018_2868687 crossref_primary_10_1016_j_ins_2019_07_035 crossref_primary_10_1109_TEVC_2022_3164260 crossref_primary_10_1109_TSC_2022_3177316 crossref_primary_10_1109_TCYB_2022_3164412 crossref_primary_10_1109_TFUZZ_2024_3425495 crossref_primary_10_1016_j_powtec_2022_117941 crossref_primary_10_1109_TCSS_2022_3197421 crossref_primary_10_1080_19393555_2024_2338438 crossref_primary_10_1109_TETC_2021_3085337 crossref_primary_10_1016_j_swevo_2019_100561 crossref_primary_10_1016_j_neunet_2018_02_015 crossref_primary_10_3390_mi13040611 crossref_primary_10_3390_buildings12060706 crossref_primary_10_1016_j_swevo_2022_101208 crossref_primary_10_1016_j_ress_2018_08_010 crossref_primary_10_1016_j_inffus_2023_101987 crossref_primary_10_1016_j_jksuci_2023_01_020 crossref_primary_10_1145_3369798 |
| Cites_doi | 10.1016/j.autcon.2012.11.001 10.1016/j.proeng.2012.08.120 10.1007/s00500-017-2547-1 10.1007/0-306-48056-5_16 10.1145/1390156.1390294 10.1109/TPAMI.2012.269 10.1109/FUZZ-IEEE.2015.7337941 10.1023/A:1008202821328 10.1109/ICASSP.2015.7178918 10.1016/j.ssci.2005.08.012 10.1016/0165-0114(81)90031-2 10.4028/www.scientific.net/AMM.501-504.2411 10.1109/TFUZZ.2010.2098879 10.1007/978-81-322-1602-5_17 10.1145/1553374.1553505 10.1109/TNNLS.2016.2609437 10.1109/TFUZZ.2013.2278989 10.1016/S0898-1221(01)00277-2 10.1016/0165-0114(95)00015-D 10.1142/SECE 10.1023/A:1024260130050 10.1002/int.21676 10.2307/1190975 10.1016/j.cor.2014.10.008 10.1109/TFUZZ.2014.2337938 10.1109/TPAMI.2011.108 10.1007/s00500-013-1209-1 10.1007/978-81-322-1952-1_15 10.1109/TFUZZ.2014.2315655 10.1016/j.proeps.2009.09.205 10.1109/91.784209 10.1109/TPAMI.2014.2353635 10.1145/2598394.2602287 10.1016/j.asoc.2015.12.020 10.1016/j.neucom.2016.11.018 10.1016/j.ssci.2011.08.042 10.1109/COMPSAC.2015.63 10.1109/TSC.2015.2401598 10.1016/0098-1354(95)00259-6 10.1016/S0165-0114(86)80034-3 10.1016/j.asoc.2015.08.043 10.1126/science.1127647 10.1109/TPAMI.2008.53 10.1109/21.256541 10.1016/S0377-2217(99)00435-X 10.1007/978-3-642-29584-3 10.1016/j.jlp.2015.11.013 10.1016/j.ress.2014.08.003 10.1109/TEVC.2008.919004 10.1109/TFUZZ.2015.2406889 10.1109/CFIS.2015.7391664 10.1016/j.ress.2013.01.006 10.1007/s00521-015-1916-x 10.1016/j.cor.2014.04.013 10.1016/j.asoc.2014.09.041 10.3846/13923730.2014.890662 10.1016/S0020-0255(02)00181-0 10.1109/SYSoSE.2012.6384140 10.1016/S0019-9958(65)90241-X 10.1109/IFSA-NAFIPS.2013.6608375 10.1162/neco.2006.18.7.1527 10.22260/ISARC2009/0035 10.1016/j.ecolind.2017.06.037 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TFUZZ.2017.2738605 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0034 |
| EndPage | 1575 |
| ExternalDocumentID | 10_1109_TFUZZ_2017_2738605 8007290 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61325019; 61472167; 61473263; U1509207 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c295t-19b95e2ebb678a3793fea21c72669a7ce09e23ad673d7422b75dfee48add12603 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 62 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000417559300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6706 |
| IngestDate | Mon Jun 30 04:38:50 EDT 2025 Tue Nov 18 22:21:55 EST 2025 Sat Nov 29 03:12:36 EST 2025 Tue Aug 26 17:07:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-19b95e2ebb678a3793fea21c72669a7ce09e23ad673d7422b75dfee48add12603 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6095-6325 |
| PQID | 1970711158 |
| PQPubID | 85428 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_1970711158 ieee_primary_8007290 crossref_citationtrail_10_1109_TFUZZ_2017_2738605 crossref_primary_10_1109_TFUZZ_2017_2738605 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Dec. 2017-12-00 20171201 |
| PublicationDateYYYYMMDD | 2017-12-01 |
| PublicationDate_xml | – month: 12 year: 2017 text: 2017-Dec. |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on fuzzy systems |
| PublicationTitleAbbrev | TFUZZ |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 cao (ref10) 2007; 13 ref11 ref54 ref17 ref16 ref19 ref18 aldrich (ref2) 1997 wang (ref22) 2009; 1 ref51 ref50 bengio (ref42) 0 khosla (ref43) 0 ref46 ref45 ref48 ref47 ref41 ref44 ref49 ref7 ref9 ref4 ref3 tettamanzi (ref57) 2013 ref6 ref40 salakhutdinov (ref27) 2009 ref35 ref34 ref37 chen (ref5) 2011; 27 ref36 ref75 ref31 ref74 ref30 ref33 ref32 ref1 ref39 martens (ref62) 0 guo (ref21) 2012; 32 ref71 bergstra (ref70) 0 ref73 ref72 vincent (ref38) 2010; 11 ref68 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref65 ref28 dodshon (ref8) 0 ref29 ref60 ref61 |
| References_xml | – volume: 11 start-page: 3371 year: 2010 ident: ref38 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – ident: ref9 doi: 10.1016/j.autcon.2012.11.001 – ident: ref6 doi: 10.1016/j.proeng.2012.08.120 – ident: ref71 doi: 10.1007/s00500-017-2547-1 – ident: ref75 doi: 10.1007/0-306-48056-5_16 – ident: ref34 doi: 10.1145/1390156.1390294 – ident: ref28 doi: 10.1109/TPAMI.2012.269 – start-page: 153 year: 0 ident: ref42 article-title: Greedy layer-wise training of deep networks publication-title: Proc 19th Int Conf Neural Inf Process Syst – ident: ref53 doi: 10.1109/FUZZ-IEEE.2015.7337941 – ident: ref73 doi: 10.1023/A:1008202821328 – ident: ref58 doi: 10.1109/ICASSP.2015.7178918 – ident: ref66 doi: 10.1016/j.ssci.2005.08.012 – ident: ref47 doi: 10.1016/0165-0114(81)90031-2 – ident: ref7 doi: 10.4028/www.scientific.net/AMM.501-504.2411 – ident: ref67 doi: 10.1109/TFUZZ.2010.2098879 – ident: ref52 doi: 10.1007/978-81-322-1602-5_17 – start-page: 2546 year: 0 ident: ref70 article-title: Algorithms for hyper-parameter optimization publication-title: Proc Annu Conf Neural Inf Process Syst – ident: ref39 doi: 10.1145/1553374.1553505 – ident: ref60 doi: 10.1109/TNNLS.2016.2609437 – ident: ref36 doi: 10.1109/TFUZZ.2013.2278989 – ident: ref49 doi: 10.1016/S0898-1221(01)00277-2 – ident: ref41 doi: 10.1016/0165-0114(95)00015-D – ident: ref14 doi: 10.1142/SECE – ident: ref24 doi: 10.1023/A:1024260130050 – year: 1997 ident: ref2 publication-title: Safety First Technology Labor and Business in the Building of American Work Safety 1870-1939 – ident: ref45 doi: 10.1002/int.21676 – ident: ref65 doi: 10.2307/1190975 – ident: ref74 doi: 10.1016/j.cor.2014.10.008 – volume: 32 start-page: 96 year: 2012 ident: ref21 article-title: Classification model of accident early-warning for coal mine based on AHP-fuzzy synthetic evaluation and its application publication-title: Mining research and development – ident: ref18 doi: 10.1109/TFUZZ.2014.2337938 – ident: ref12 doi: 10.1109/TPAMI.2011.108 – year: 2013 ident: ref57 publication-title: Soft Computing Integrating Evolutionary Neural and Fuzzy Systems – ident: ref63 doi: 10.1007/s00500-013-1209-1 – ident: ref51 doi: 10.1007/978-81-322-1952-1_15 – ident: ref17 doi: 10.1109/TFUZZ.2014.2315655 – volume: 1 start-page: 1332 year: 2009 ident: ref22 article-title: Study on coalface stray current safety early warning based on ANFIS publication-title: Procedia Earth and Planetary Science 1 doi: 10.1016/j.proeps.2009.09.205 – ident: ref48 doi: 10.1109/91.784209 – ident: ref55 doi: 10.1109/TPAMI.2014.2353635 – ident: ref68 doi: 10.1145/2598394.2602287 – ident: ref37 doi: 10.1016/j.asoc.2015.12.020 – volume: 27 start-page: 159 year: 2011 ident: ref5 article-title: Design of early-warning mechanism of work safety for chemical industry park based on immune mechanism publication-title: China Safety Science Journal – ident: ref31 doi: 10.1016/j.neucom.2016.11.018 – ident: ref20 doi: 10.1016/j.ssci.2011.08.042 – ident: ref56 doi: 10.1109/COMPSAC.2015.63 – ident: ref13 doi: 10.1109/TSC.2015.2401598 – start-page: 352 year: 0 ident: ref8 article-title: Application of the bow tie analysis technique to enhancing the identification of risk controls during accident investigation activities publication-title: Proceedings of IntI Ergonomics Assoc – ident: ref40 doi: 10.1016/0098-1354(95)00259-6 – ident: ref44 doi: 10.1016/S0165-0114(86)80034-3 – ident: ref59 doi: 10.1016/j.asoc.2015.08.043 – ident: ref25 doi: 10.1126/science.1127647 – ident: ref15 doi: 10.1109/TPAMI.2008.53 – ident: ref23 doi: 10.1109/21.256541 – ident: ref69 doi: 10.1016/S0377-2217(99)00435-X – ident: ref46 doi: 10.1007/978-3-642-29584-3 – ident: ref72 doi: 10.1016/j.jlp.2015.11.013 – ident: ref16 doi: 10.1016/j.ress.2014.08.003 – ident: ref61 doi: 10.1109/TEVC.2008.919004 – ident: ref29 doi: 10.1109/TFUZZ.2015.2406889 – ident: ref30 doi: 10.1109/CFIS.2015.7391664 – ident: ref54 doi: 10.1016/j.ress.2013.01.006 – ident: ref33 doi: 10.1007/s00521-015-1916-x – ident: ref64 doi: 10.1016/j.cor.2014.04.013 – start-page: 448 year: 2009 ident: ref27 article-title: Deep Boltzmann machines publication-title: Proc Artif Intell Statist – ident: ref1 doi: 10.1016/j.asoc.2014.09.041 – ident: ref3 doi: 10.3846/13923730.2014.890662 – ident: ref50 doi: 10.1016/S0020-0255(02)00181-0 – ident: ref11 doi: 10.1109/SYSoSE.2012.6384140 – ident: ref19 doi: 10.1016/S0019-9958(65)90241-X – start-page: 689 year: 0 ident: ref43 article-title: Multimodal deep learning publication-title: Proc 28th Int Conf Mach Learn – ident: ref35 doi: 10.1109/IFSA-NAFIPS.2013.6608375 – ident: ref26 doi: 10.1162/neco.2006.18.7.1527 – ident: ref4 doi: 10.22260/ISARC2009/0035 – start-page: 735 year: 0 ident: ref62 article-title: Deep learning via hessian-free optimization publication-title: Proc 27th Int Conf Mach Learn – volume: 13 start-page: 296 year: 2007 ident: ref10 article-title: Risk monitoring and early-warning technology of coal mine production publication-title: Journal of Coal Science and Engineering – ident: ref32 doi: 10.1016/j.ecolind.2017.06.037 |
| SSID | ssj0014518 |
| Score | 2.4868631 |
| Snippet | Early warning is crucial for preventing industrial accidents and mitigating damage, but current methods are often time-consuming, error-prone, and incompetent... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1561 |
| SubjectTerms | Accident early warning Accidents Algorithms Aluminum Artificial neural networks biogeography-based optimization (BBO) Damage prevention deep denoising autoencoder (DDAE) deep learning evolutionary learning Explosions Fuzzy logic Fuzzy sets Heuristic methods Industrial accidents Machine learning Mathematical models Neural networks Noise reduction Optimization Order parameters pythagorean fuzzy set (PFS) Robustness (mathematics) Uncertainty |
| Title | A Pythagorean-Type Fuzzy Deep Denoising Autoencoder for Industrial Accident Early Warning |
| URI | https://ieeexplore.ieee.org/document/8007290 https://www.proquest.com/docview/1970711158 |
| Volume | 25 |
| WOSCitedRecordID | wos000417559300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH7U4kEP7mK1Sg7eNDpbJpNjUYsHKT1UXC5DllctyLTUqaC_3iQzrYIieBnmkIQw3-QtSd73ARxnSnNtTSJNhjKmiUg4FSlGVNnoOmOJkSrwhcI3vNfL7u9FvwGni1oYRPSXz_DMvfqzfDPWM7dVdp55nmuboC9xzqtarcWJQcLCquwtjWnKg3ReIBOI80H39vHR3eLiZ64QJXVSdd-ckFdV-WGKvX_prv9vZhuwVseRpFMBvwkNLLZgfa7RQOoluwWr3wgHt-GhQ_rv5bN8suPLgroklHRnHx_v5BJxYh_FeOQ2D0hnVo4dxaWxY9mwlnwpfJCO1k6ItCSeG5ncVVsrO3DbvRpcXNNaXIHqSLCShkIJhhEqZd2VjO0yHaKMQs2txxaSawwERrE0KY-NTZ8jxZkZIiaZNYihTYLiXWgW4wL3gJiAG0cwmjlJ8UAFkhk11IyhjQ0dm1ALwvnXznXNPO4EMF5yn4EEIvcI5Q6hvEaoBSeLPpOKd-PP1tsOk0XLGo4WtOeg5vXSfM1DYadkLTzL9n_vdQArbuzqzkobmuV0hoewrN_K0ev0yP91n-ml09U |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH6ICurBXRzXHLxptFua5jiog-I4eBhxuZQsb3RAOqIdQX-9SdoZBUXwUnpI0tKveUuS930Ae5nSXFuTSJOejGkiEk5FihFVNrrOWGKkCnyhcJt3OtntrbiagINxLQwi-sNneOhu_V6-GeihWyo7yjzPtU3Qp1iSRGFVrTXeM0hYWBW-pTFNeZCOSmQCcdRtXd_fu3Nc_NCVoqROrO6bG_K6Kj-MsfcwrYX_vdsizNeRJGlW0C_BBBbLsDBSaSD1pF2GuW-Ugytw1yRX7-WjfLDjy4K6NJS0hh8f7-QE8dleikHfLR-Q5rAcOJJLY8eygS350vggTa2dFGlJPDsyuakWV1bhunXaPT6jtbwC1ZFgJQ2FEgwjVMo6LBnbidpDGYWaW58tJNcYCIxiaVIeG5tAR4oz00NMMmsSQ5sGxWswWQwKXAdiAm4cxWjmRMUDFUhmVE8zhjY6dHxCDQhHXzvXNfe4k8B4yn0OEojcI5Q7hPIaoQbsj_s8V8wbf7ZecZiMW9ZwNGBrBGpeT87XPBT2layNZ9nG7712Yease9nO2-edi02Ydc-pTrBswWT5MsRtmNZvZf_1Zcf_gZ8XE9cc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Pythagorean-Type+Fuzzy+Deep+Denoising+Autoencoder+for+Industrial+Accident+Early+Warning&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Zheng%2C+Yu-Jun&rft.au=Chen%2C+Sheng-Yong&rft.au=Xue%2C+Yu&rft.au=Xue%2C+Jin-Yun&rft.date=2017-12-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=25&rft.issue=6&rft.spage=1561&rft.epage=1575&rft_id=info:doi/10.1109%2FTFUZZ.2017.2738605&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2017_2738605 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |