Soft Error Tolerant Convolutional Neural Networks on FPGAs With Ensemble Learning

Convolutional neural networks (CNNs) are widely used in computer vision and natural language processing. Field-programmable gate arrays (FPGAs) are popular accelerators for CNNs. However, if used in critical applications, the reliability of FPGA-based CNNs becomes a priority because FPGAs are prone...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on very large scale integration (VLSI) systems Vol. 30; no. 3; pp. 291 - 302
Main Authors: Gao, Zhen, Zhang, Han, Yao, Yi, Xiao, Jiajun, Zeng, Shulin, Ge, Guangjun, Wang, Yu, Ullah, Anees, Reviriego, Pedro
Format: Journal Article
Language:English
Published: New York IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1063-8210, 1557-9999
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Convolutional neural networks (CNNs) are widely used in computer vision and natural language processing. Field-programmable gate arrays (FPGAs) are popular accelerators for CNNs. However, if used in critical applications, the reliability of FPGA-based CNNs becomes a priority because FPGAs are prone to suffer soft errors. Traditional protection schemes, such as triple modular redundancy (TMR), introduce a large overhead, which is not acceptable in resource-limited platforms. This article proposes to use an ensemble of weak CNNs to build a robust classifier with low cost. To have a group of base CNNs with low complexity and balanced similarity and diversity, residual neural networks (ResNets) with different layers (20/32/44/56) are combined in the ensemble system to replace a single strong ResNet 110. In addition, a robust combiner is designed based on the reliability evaluation of a single ResNet. Single ResNets with different layers and different ensemble schemes are implemented on the FPGA accelerator based on Xilinx Zynq 7000 SoC. The reliability of the ensemble systems is evaluated based on a large-scale fault injection platform and compared with that of the TMR-protected ResNet 110 and ResNet 20. Experiment results show that the proposed ensembles could effectively improve the system reliability when suffering soft errors with an overhead much lower than TMR.
AbstractList Convolutional neural networks (CNNs) are widely used in computer vision and natural language processing. Field-programmable gate arrays (FPGAs) are popular accelerators for CNNs. However, if used in critical applications, the reliability of FPGA-based CNNs becomes a priority because FPGAs are prone to suffer soft errors. Traditional protection schemes, such as triple modular redundancy (TMR), introduce a large overhead, which is not acceptable in resource-limited platforms. This article proposes to use an ensemble of weak CNNs to build a robust classifier with low cost. To have a group of base CNNs with low complexity and balanced similarity and diversity, residual neural networks (ResNets) with different layers (20/32/44/56) are combined in the ensemble system to replace a single strong ResNet 110. In addition, a robust combiner is designed based on the reliability evaluation of a single ResNet. Single ResNets with different layers and different ensemble schemes are implemented on the FPGA accelerator based on Xilinx Zynq 7000 SoC. The reliability of the ensemble systems is evaluated based on a large-scale fault injection platform and compared with that of the TMR-protected ResNet 110 and ResNet 20. Experiment results show that the proposed ensembles could effectively improve the system reliability when suffering soft errors with an overhead much lower than TMR.
Author Xiao, Jiajun
Gao, Zhen
Ge, Guangjun
Wang, Yu
Ullah, Anees
Zhang, Han
Yao, Yi
Zeng, Shulin
Reviriego, Pedro
Author_xml – sequence: 1
  givenname: Zhen
  orcidid: 0000-0001-9887-1418
  surname: Gao
  fullname: Gao, Zhen
  email: zgao@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Han
  surname: Zhang
  fullname: Zhang, Han
  email: z_han@tju.edu.cn
  organization: Tianjin International Engineering Institute, Tianjin University, Tianjin, China
– sequence: 3
  givenname: Yi
  orcidid: 0000-0003-3582-5726
  surname: Yao
  fullname: Yao, Yi
  email: yiyao@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 4
  givenname: Jiajun
  surname: Xiao
  fullname: Xiao, Jiajun
  email: destinedone@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 5
  givenname: Shulin
  surname: Zeng
  fullname: Zeng, Shulin
  email: zengsl18@mails.tsinghua.edu.cn
  organization: School of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 6
  givenname: Guangjun
  surname: Ge
  fullname: Ge, Guangjun
  email: geguangjun@126.com
  organization: School of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 7
  givenname: Yu
  orcidid: 0000-0002-2931-8958
  surname: Wang
  fullname: Wang, Yu
  email: yu-wang@mail.tsinghua.edu.cn
  organization: School of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 8
  givenname: Anees
  orcidid: 0000-0002-4770-4967
  surname: Ullah
  fullname: Ullah, Anees
  email: aneesullah@uetpeshawar.edu.pk
  organization: Department of Electronics Engineering, University of Engineering and Technology, Peshawar, Abbottabad, Pakistan
– sequence: 9
  givenname: Pedro
  orcidid: 0000-0003-2540-5234
  surname: Reviriego
  fullname: Reviriego, Pedro
  email: revirieg@it.uc3m.es
  organization: Department of Telematic Engineering, Universidad Carlos III de Madrid, Leganés, Spain
BookMark eNp9kE1LAzEQhoNUsK3-Ab0EPG_N525yLKWtQvEDqx6XdHeiW9dEk1Tx37u14sGDw8AMzPvODM8A9Zx3gNAxJSNKiT5b3i9uL0aMMDrilCuh6R7qUymLTHfR63qS80wxSg7QIMY1IVQITfro5tbbhKch-ICXvoVgXMIT7959u0mNd6bFl7AJ3yV9-PAcsXd4dj0fR_zQpCc8dRFeVi3gBZjgGvd4iPataSMc_dQhuptNl5PzbHE1v5iMF1nFtEwZLbRVVtS2tlatGAcNCqypLNWyzleS6oIoUTFF67oGIJJLwRU3optVOeF8iE53e1-Df9tATOXab0L3cCxZzmVBiy47FdupquBjDGDL19C8mPBZUlJu0ZXf6MotuvIHXWdSf0xVk8wWRwqmaf-3nuysDQD83tK5EpII_gWCLn51
CODEN ITCOB4
CitedBy_id crossref_primary_10_1016_j_cosrev_2024_100682
crossref_primary_10_1109_JSAC_2025_3559150
crossref_primary_10_1109_MDAT_2023_3241116
crossref_primary_10_1145_3716140
crossref_primary_10_3390_electronics13050879
crossref_primary_10_1109_TCASAI_2025_3552735
crossref_primary_10_1109_TNS_2022_3216360
crossref_primary_10_1109_TCAD_2024_3523424
crossref_primary_10_1109_TCAD_2023_3266405
crossref_primary_10_1109_JSAC_2023_3242713
crossref_primary_10_1109_TDMR_2023_3235767
crossref_primary_10_3390_aerospace10010088
crossref_primary_10_1109_TNS_2025_3595388
Cites_doi 10.1109/ACCESS.2017.2742698
10.1109/DFT50435.2020.9250837
10.1109/TPDS.2020.3043449
10.1109/TCAD.2017.2705069
10.1109/TC.2018.2792445
10.1109/DAC.2018.8465834
10.1109/TCAD.2020.2981056
10.1109/TNS.2018.2884460
10.1109/ASAP.2019.00-23
10.1109/TAFFC.2017.2753235
10.1109/ISCA.2016.32
10.1109/TMM.2015.2477042
10.1109/TNS.2020.2983662
10.1109/TMI.2016.2525803
10.1109/CVPR.2016.90
10.1109/AICAS48895.2020.9073925
10.1109/TNS.2009.2033381
10.1109/JBHI.2018.2879834
10.1109/AERO.2008.4526470
10.1109/CVPR.2015.7298594
10.1109/LSP.2017.2758862
10.1201/b12207
10.1109/LATW.2017.7906770
10.1109/ICCE-Asia.2016.7804818
10.1109/MDAT.2019.2915656
10.1145/3460288
10.1007/978-0-387-31069-5
10.1109/AERO.2005.1559551
10.1109/ATS47505.2019.000-8
10.1109/TNS.2021.3050707
10.1109/LATW.2018.8347234
10.1109/TIFS.2017.2766583
10.1109/TCAD.2019.2930577
10.1109/TVLSI.2020.3046075
10.1109/ITC44170.2019.9000149
10.23919/DATE48585.2020.9116571
10.1109/CCWC.2018.8301749
10.1109/12.59860
10.1109/TVLSI.2019.2939726
10.1007/978-1-4419-6715-2
10.1109/DSN-W.2017.47
10.1109/TNS.2018.2812719
10.1109/SiPS.2017.8110024
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TVLSI.2021.3138491
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9999
EndPage 302
ExternalDocumentID 10_1109_TVLSI_2021_3138491
9684504
Genre orig-research
GrantInformation_xml – fundername: Go2Edge Network
  grantid: RED2018-102585-T
– fundername: ACHILLES Project
  grantid: PID2019-104207RB-I00
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 62171313
  funderid: 10.13039/501100001809
– fundername: Department of Research and Innovation of Madrid Regional Authority with the EMPATIA-CM Research Project
  grantid: Y2018/TCS-5046
– fundername: NSFC Joint Foundation
  grantid: 20200509
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-179f8f4dfdff8b23e9e8efacf195d6b5197084c281dddee05354383a46b5c6033
IEDL.DBID RIE
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000745446700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-8210
IngestDate Mon Jun 30 10:26:27 EDT 2025
Tue Nov 18 22:18:54 EST 2025
Sat Nov 29 03:36:18 EST 2025
Wed Aug 27 02:49:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-179f8f4dfdff8b23e9e8efacf195d6b5197084c281dddee05354383a46b5c6033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2931-8958
0000-0003-3582-5726
0000-0001-9887-1418
0000-0002-4770-4967
0000-0003-2540-5234
PQID 2635717717
PQPubID 85424
PageCount 12
ParticipantIDs proquest_journals_2635717717
crossref_citationtrail_10_1109_TVLSI_2021_3138491
crossref_primary_10_1109_TVLSI_2021_3138491
ieee_primary_9684504
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on very large scale integration (VLSI) systems
PublicationTitleAbbrev TVLSI
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref52
Simonyan (ref1)
ref10
ref17
ref16
ref19
ref51
ref50
Caffrey (ref18)
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref7
ref9
ref4
Lee (ref49) 2014
ref3
ref5
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
Li (ref8)
ref24
ref23
ref26
ref25
ref20
Carmichael (ref11) 2006
ref22
ref21
(ref6) 2011
(ref40) 2020
ref28
ref27
ref29
Ioffe (ref48)
Jonathan (ref12)
References_xml – ident: ref15
  doi: 10.1109/ACCESS.2017.2742698
– ident: ref16
  doi: 10.1109/DFT50435.2020.9250837
– ident: ref32
  doi: 10.1109/TPDS.2020.3043449
– ident: ref4
  doi: 10.1109/TCAD.2017.2705069
– ident: ref51
  doi: 10.1109/TC.2018.2792445
– ident: ref23
  doi: 10.1109/DAC.2018.8465834
– volume-title: Proc. ICML
  ident: ref48
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– volume-title: Road Vehicles—Functional Safety
  year: 2011
  ident: ref6
– ident: ref33
  doi: 10.1109/TCAD.2020.2981056
– ident: ref26
  doi: 10.1109/TNS.2018.2884460
– ident: ref34
  doi: 10.1109/ASAP.2019.00-23
– ident: ref47
  doi: 10.1109/TAFFC.2017.2753235
– ident: ref21
  doi: 10.1109/ISCA.2016.32
– ident: ref46
  doi: 10.1109/TMM.2015.2477042
– ident: ref28
  doi: 10.1109/TNS.2020.2983662
– ident: ref42
  doi: 10.1109/TMI.2016.2525803
– ident: ref3
  doi: 10.1109/CVPR.2016.90
– ident: ref38
  doi: 10.1109/AICAS48895.2020.9073925
– ident: ref17
  doi: 10.1109/TNS.2009.2033381
– ident: ref43
  doi: 10.1109/JBHI.2018.2879834
– ident: ref50
  doi: 10.1109/AERO.2008.4526470
– ident: ref2
  doi: 10.1109/CVPR.2015.7298594
– ident: ref44
  doi: 10.1109/LSP.2017.2758862
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref1
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref41
  doi: 10.1201/b12207
– start-page: 1
  volume-title: Proc. Mil. Aerosp. Appl. Program. Devices Technol. Conf. (MAPLD)
  ident: ref18
  article-title: Single-event upsets in SRAM FPGAs
– ident: ref25
  doi: 10.1109/LATW.2017.7906770
– ident: ref20
  doi: 10.1109/ICCE-Asia.2016.7804818
– ident: ref36
  doi: 10.1109/MDAT.2019.2915656
– ident: ref35
  doi: 10.1145/3460288
– ident: ref9
  doi: 10.1007/978-0-387-31069-5
– ident: ref13
  doi: 10.1109/AERO.2005.1559551
– ident: ref22
  doi: 10.1109/ATS47505.2019.000-8
– ident: ref29
  doi: 10.1109/TNS.2021.3050707
– volume-title: Triple module redundancy design techniques for virtex FPGAs
  year: 2006
  ident: ref11
– ident: ref27
  doi: 10.1109/LATW.2018.8347234
– ident: ref45
  doi: 10.1109/TIFS.2017.2766583
– ident: ref39
  doi: 10.1109/TCAD.2019.2930577
– ident: ref10
  doi: 10.1109/TVLSI.2020.3046075
– ident: ref31
  doi: 10.1109/ITC44170.2019.9000149
– ident: ref24
  doi: 10.23919/DATE48585.2020.9116571
– ident: ref19
  doi: 10.1109/CCWC.2018.8301749
– start-page: 1
  volume-title: Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal. (SC)
  ident: ref8
  article-title: Understanding error propagation in deep learning neural network (DNN) accelerators and applications
– start-page: 249
  volume-title: Proc. FPGA
  ident: ref12
  article-title: Voter insertion algorithms for FPGA designs using triple modular redundancy
– ident: ref14
  doi: 10.1109/12.59860
– ident: ref5
  doi: 10.1109/TVLSI.2019.2939726
– ident: ref7
  doi: 10.1007/978-1-4419-6715-2
– ident: ref30
  doi: 10.1109/DSN-W.2017.47
– volume-title: Zynq DPU V3.2-Product Guide, PG338 (V3.2)
  year: 2020
  ident: ref40
– ident: ref52
  doi: 10.1109/TNS.2018.2812719
– year: 2014
  ident: ref49
  article-title: Deeply-supervised nets
  publication-title: arXiv:1409.5185
– ident: ref37
  doi: 10.1109/SiPS.2017.8110024
SSID ssj0014490
Score 2.4504898
Snippet Convolutional neural networks (CNNs) are widely used in computer vision and natural language processing. Field-programmable gate arrays (FPGAs) are popular...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 291
SubjectTerms Artificial neural networks
Computer vision
Convolution
Convolutional neural networks
Convolutional neural networks (CNNs)
ensemble
Ensemble learning
fault injection
Fault tolerant systems
Field programmable gate arrays
field-programmable gate array (FPGA) accelerator
Natural language processing
Neural networks
Random access memory
Redundancy
Reliability
Reliability analysis
Robustness
soft error tolerance
Soft errors
System reliability
Systems analysis
Title Soft Error Tolerant Convolutional Neural Networks on FPGAs With Ensemble Learning
URI https://ieeexplore.ieee.org/document/9684504
https://www.proquest.com/docview/2635717717
Volume 30
WOSCitedRecordID wos000745446700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9999
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014490
  issn: 1063-8210
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA5z-KAP_pridEoefNO6pk3b5HGMTYUxJpu6t5KmiQ5mK223v98k7YqiCEKhpUmg3Jfe5ZK77wC4Qoz7kU-lFceBsLD0Y4tFLLKYTQlzJEIRMzyzo2A8JvM5nTTATZ0LI4QwwWfiVj-as_w45Su9VdalPsGeJv_cCoKgzNWqTwwwpiXzgO9aRPkxmwQZm3Znz6Ppg3IFHaQ8VJdgir4ZIVNV5YcqNvZluP-_LzsAe9U6EvZK4A9BQyRHYPcLu2ALPE6VioWDLEszOEuXQlmlAvbTZF3NNjVcU3OYm4kFz2GawOHkrpfDl0XxBgdJLt6jpYAVCevrMXgaDmb9e6uqoGBxh3qF5h6VROJYxlKSyHEFFURIxiWiXuxHOmnVJpg7atGq1JyuEuFp6lKGVRv3bdc9Ac0kTcQpgA5SoEqfYWyrZo8ym4koRly9E4R7dhugjUhDXtGL6yoXy9C4GTYNDQyhhiGsYGiD63rMR0mu8WfvlhZ83bOSeRt0NsiF1f-Xh5piRzmq6jr7fdQ52HF0IoOJJuuAZpGtxAXY5utikWeXZmp9AlU1zM8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED9kCuqD3-L8zINvWte0aZc8jrGpOIfi_HgraZroYLbSdvv7TbJuKIogFFqaBMr90rtccvc7gFPMRRiHTDlJ0pQOUWHi8JjHDncZ5Z7COOaWZ7bX7Pfpywu7W4DzeS6MlNIGn8kL82jP8pNMjM1WWYOFlASG_HMxIMTD02yt-ZkBIWzKPRD6DtWezCxFxmWNwVPv4Vo7gx7WPqpPCcPfzJCtq_JDGVsL013_37dtwFq1kkStKfSbsCDTLVj9wi-4DfcPWsmiTp5nORpkI6ntUonaWTqp5psebsg57M1GgxcoS1H37rJVoOdh-YY6aSHf45FEFQ3r6w48djuD9pVT1VBwhMeC0rCPKqpIohKlaOz5kkkqFRcKsyAJY5O26lIiPL1s1YrO1IkIDHkpJ7pNhK7v70ItzVK5B8jDGlYVckJc3Rww7nIZJ1jod5KKwK0Dnok0EhXBuKlzMYqso-GyyMIQGRiiCoY6nM3HfEzpNf7svW0EP-9ZybwOhzPkouoPLCJDsqNdVX3t_z7qBJavBre9qHfdvzmAFc-kNdjYskOolflYHsGSmJTDIj-20-wTJzXQFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soft+Error+Tolerant+Convolutional+Neural+Networks+on+FPGAs+With+Ensemble+Learning&rft.jtitle=IEEE+transactions+on+very+large+scale+integration+%28VLSI%29+systems&rft.au=Gao%2C+Zhen&rft.au=Zhang%2C+Han&rft.au=Yao%2C+Yi&rft.au=Xiao%2C+Jiajun&rft.date=2022-03-01&rft.pub=IEEE&rft.issn=1063-8210&rft.volume=30&rft.issue=3&rft.spage=291&rft.epage=302&rft_id=info:doi/10.1109%2FTVLSI.2021.3138491&rft.externalDocID=9684504
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-8210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-8210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-8210&client=summon