A Robust Generalized Proportionate Diffusion LMS Algorithm for Distributed Estimation
This brief paper proposes a robust generalized proportionate diffusion Least Mean Square (LMS) algorithm for distributed estimation of a parameter vector in a network. The contribution of this brief is twofold. First, we generalize the concept of proportionate diffusion LMS by letting the gain matri...
Uloženo v:
| Vydáno v: | IEEE transactions on circuits and systems. II, Express briefs Ročník 68; číslo 4; s. 1552 - 1556 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1549-7747, 1558-3791 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This brief paper proposes a robust generalized proportionate diffusion Least Mean Square (LMS) algorithm for distributed estimation of a parameter vector in a network. The contribution of this brief is twofold. First, we generalize the concept of proportionate diffusion LMS by letting the gain matrix to be non-diagonal instead of being a diagonal matrix. Second, to achieve robustness to impulsive noise while simultaneously maintaining a fast convergence property, we use a combination of Mean Square Deviation (MSD) and disturbance incurred in the adaptation step as the objective cost function. By simplifying and optimizing the proposed cost function, a closed form formula is obtained for the gain matrix in the general non-diagonal case. Simulation results demonstrate the efficiency of the proposed method in comparison to some other state-of-the-art algorithms. |
|---|---|
| AbstractList | This brief paper proposes a robust generalized proportionate diffusion Least Mean Square (LMS) algorithm for distributed estimation of a parameter vector in a network. The contribution of this brief is twofold. First, we generalize the concept of proportionate diffusion LMS by letting the gain matrix to be non-diagonal instead of being a diagonal matrix. Second, to achieve robustness to impulsive noise while simultaneously maintaining a fast convergence property, we use a combination of Mean Square Deviation (MSD) and disturbance incurred in the adaptation step as the objective cost function. By simplifying and optimizing the proposed cost function, a closed form formula is obtained for the gain matrix in the general non-diagonal case. Simulation results demonstrate the efficiency of the proposed method in comparison to some other state-of-the-art algorithms. |
| Author | Javaheri, Amirhossein Zayyani, Hadi |
| Author_xml | – sequence: 1 givenname: Hadi orcidid: 0000-0001-6350-6541 surname: Zayyani fullname: Zayyani, Hadi email: zayyani@qut.ac.ir organization: Department of Electrical and Computer Engineering, Qom University of Technology, Qom, Iran – sequence: 2 givenname: Amirhossein orcidid: 0000-0002-2812-0456 surname: Javaheri fullname: Javaheri, Amirhossein email: javaheri_amirhossein@ee.sharif.edu organization: Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran |
| BookMark | eNp9kE1PAjEQhhujiYD-Ab1s4nmxH7TdHgkikmA0AudNd5nVkmWLbfegv94uEA8ePM1M5n3m4-2j88Y2gNANwUNCsLpfTZbz-ZBiiocMUyUzfIZ6hPMsZVKR8y4fqVTKkbxEfe-3OIowoz20Hidvtmh9SGbQgNO1-YZN8urs3rpgbKMDJA-mqlofi2TxvEzG9bt1Jnzsksq62PPBmaINkZr6YHa6o67QRaVrD9enOEDrx-lq8pQuXmbzyXiRllTxkBJRQAEMNC05V0LBpuCcA-day4rHUvICi5EUQhRKxKckYwJvSq4rmimo2ADdHefunf1swYd8a1vXxJU55VhwpVhGoio7qkpnvXdQ5aUJhzuD06bOCc47E_ODiXlnYn4yMaL0D7p38Uf39T90e4QMAPwCihJFccZ-ADkWf_w |
| CODEN | ICSPE5 |
| CitedBy_id | crossref_primary_10_1109_TCSII_2021_3087535 crossref_primary_10_1109_TCSII_2021_3123055 crossref_primary_10_1109_TCSII_2022_3230831 crossref_primary_10_1109_TCSII_2023_3328779 crossref_primary_10_1109_JSEN_2024_3478332 crossref_primary_10_1109_TCSII_2023_3323871 crossref_primary_10_1109_ACCESS_2024_3375757 crossref_primary_10_1109_LCOMM_2025_3550286 crossref_primary_10_34248_bsengineering_1238543 crossref_primary_10_1109_TSIPN_2023_3277591 crossref_primary_10_1109_LSP_2022_3167897 crossref_primary_10_1080_00207721_2024_2409850 crossref_primary_10_1109_TCSII_2021_3127464 crossref_primary_10_1109_TCSII_2023_3239644 crossref_primary_10_1109_LSENS_2024_3507579 crossref_primary_10_1109_TCSII_2022_3215996 crossref_primary_10_1007_s00034_022_02140_1 crossref_primary_10_1109_LSP_2022_3169087 crossref_primary_10_1109_TCSII_2022_3144195 crossref_primary_10_1007_s00034_022_02072_w crossref_primary_10_1109_TCSII_2022_3224737 crossref_primary_10_1109_TCSII_2024_3364090 crossref_primary_10_1109_TSIPN_2025_3599781 |
| Cites_doi | 10.1214/aoms/1177729893 10.1109/TCSII.2016.2548182 10.1016/j.dsp.2019.102589 10.1109/TSP.2014.2302731 10.1016/j.sigpro.2010.05.015 10.1016/j.sigpro.2016.08.023 10.1016/j.sigpro.2019.06.003 10.1109/LCOMM.2016.2550589 10.1109/TSP.2008.917383 10.1109/TCSII.2015.2435631 10.1109/TCSII.2018.2811729 10.1145/509907.509932 10.1016/j.sigpro.2020.107497 10.1109/TCSII.2020.3004507 10.1016/j.dsp.2020.102767 10.1109/BlackSeaCom.2018.8433640 10.1016/j.sigpro.2016.06.011 10.1016/j.dsp.2017.10.022 10.1109/89.861368 10.1109/TSP.2012.2232663 10.1561/2200000051 10.1109/TSP.2017.2703664 10.1109/TSP.2012.2198468 10.1109/TSP.2009.2033729 10.1016/j.sigpro.2014.07.026 10.1109/TCSII.2017.2720181 10.1109/TSP.2011.2106123 10.1016/j.sigpro.2016.03.022 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TCSII.2020.3029780 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3791 |
| EndPage | 1556 |
| ExternalDocumentID | 10_1109_TCSII_2020_3029780 9219208 |
| Genre | orig-research |
| GroupedDBID | 0R~ 29I 4.4 5VS 6IK 6J9 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 OCL PZZ RIA RIE RNS RXW TAE TAF VJK AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c295t-16bebe3ea2c55969edb555e55aa7f59ed75b0647666b9678073360dc5af289ef3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000634501300099&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1549-7747 |
| IngestDate | Sun Oct 05 00:31:16 EDT 2025 Sat Nov 29 02:23:13 EST 2025 Tue Nov 18 22:31:17 EST 2025 Wed Aug 27 02:50:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-16bebe3ea2c55969edb555e55aa7f59ed75b0647666b9678073360dc5af289ef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2812-0456 0000-0001-6350-6541 |
| PQID | 2506599381 |
| PQPubID | 85412 |
| PageCount | 5 |
| ParticipantIDs | crossref_citationtrail_10_1109_TCSII_2020_3029780 crossref_primary_10_1109_TCSII_2020_3029780 proquest_journals_2506599381 ieee_primary_9219208 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-01 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on circuits and systems. II, Express briefs |
| PublicationTitleAbbrev | TCSII |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref30 ref10 ref2 ref1 ref17 ref16 ref19 ref18 haykin (ref27) 2013 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 chen (ref11) 2009 |
| References_xml | – ident: ref30 doi: 10.1214/aoms/1177729893 – ident: ref9 doi: 10.1109/TCSII.2016.2548182 – ident: ref22 doi: 10.1016/j.dsp.2019.102589 – ident: ref6 doi: 10.1109/TSP.2014.2302731 – start-page: 3125 year: 2009 ident: ref11 article-title: Sparse LMS for system identification publication-title: Proc IEEE Int Conf Acoust Speech Signal Process (ICASSP) – ident: ref12 doi: 10.1016/j.sigpro.2010.05.015 – ident: ref19 doi: 10.1016/j.sigpro.2016.08.023 – ident: ref20 doi: 10.1016/j.sigpro.2019.06.003 – ident: ref28 doi: 10.1109/LCOMM.2016.2550589 – ident: ref2 doi: 10.1109/TSP.2008.917383 – year: 2013 ident: ref27 publication-title: Adaptive Filter Theory – ident: ref13 doi: 10.1109/TCSII.2015.2435631 – ident: ref18 doi: 10.1109/TCSII.2018.2811729 – ident: ref29 doi: 10.1145/509907.509932 – ident: ref8 doi: 10.1016/j.sigpro.2020.107497 – ident: ref21 doi: 10.1109/TCSII.2020.3004507 – ident: ref26 doi: 10.1016/j.dsp.2020.102767 – ident: ref25 doi: 10.1109/BlackSeaCom.2018.8433640 – ident: ref14 doi: 10.1016/j.sigpro.2016.06.011 – ident: ref7 doi: 10.1016/j.dsp.2017.10.022 – ident: ref15 doi: 10.1109/89.861368 – ident: ref5 doi: 10.1109/TSP.2012.2232663 – ident: ref1 doi: 10.1561/2200000051 – ident: ref17 doi: 10.1109/TSP.2017.2703664 – ident: ref4 doi: 10.1109/TSP.2012.2198468 – ident: ref3 doi: 10.1109/TSP.2009.2033729 – ident: ref24 doi: 10.1016/j.sigpro.2014.07.026 – ident: ref10 doi: 10.1109/TCSII.2017.2720181 – ident: ref16 doi: 10.1109/TSP.2011.2106123 – ident: ref23 doi: 10.1016/j.sigpro.2016.03.022 |
| SSID | ssj0029032 |
| Score | 2.4464927 |
| Snippet | This brief paper proposes a robust generalized proportionate diffusion Least Mean Square (LMS) algorithm for distributed estimation of a parameter vector in a... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1552 |
| SubjectTerms | Algorithms Circuits and systems Cost function Diffusion diffusion LMS Distributed estimation disturbance Estimation impulsive noise Indexes Parameter estimation proportionate robust Robustness Sensors Signal processing algorithms |
| Title | A Robust Generalized Proportionate Diffusion LMS Algorithm for Distributed Estimation |
| URI | https://ieeexplore.ieee.org/document/9219208 https://www.proquest.com/docview/2506599381 |
| Volume | 68 |
| WOSCitedRecordID | wos000634501300099&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-3791 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0029032 issn: 1549-7747 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwGG2QeNCDv9CIounBm07GaFd6JAiRBAkRMNyWtWt1CYJhw4N_vV-7sZBoTLxtWZssfWv7ve773kPopkWZJ6Qmjs8Id4gMI4dHQFZ05AmvSVpK2GTMlwEbDluzGR-V0F1RC6OUssln6t5c2n_50VKuzVFZncP08kxl7w5jflarVZAr7lozMqM4BhEjYZsCGZfXJ51xvw9U0AOGaryajATk1iZkXVV-LMV2f-kd_u_NjtBBHkfidgb8MSqpxQna31IXrKBpGz8vxTpJca4tHX-pCI-MLcLKngCmCj_EWq_NgRkePI1xe_66XMXp2zuGUBaeJZkdFvTqwkqQFTmeommvO-k8OrmLgiM9TlOn4QsAqqlCTwJ78LmKBKVUURqGTFO4ZVSYilPgMYLD1mVcHH03kjTUQMaUbp6h8mK5UOcIM5eHpKE0B5JDBNHCjYwcDoArCSGaVlFjM6yBzCXGjdPFPLBUw-WBhSIwUAQ5FFV0W_T5yAQ2_mxdMYNftMzHvYpqG_SCfA4mAQR3PoXwq9W4-L3XJdrzTIaKzcOpoXK6WqsrtCs_0zhZXdvP6xvA58yD |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4xaKIe_IVGFLUHbzoZo93okSAEIhAiYLgta9cqCYKB4cG_3tcyCInGxNuWtcnSb23f1733fQC3ZRZ4Qmrq-AHlDpVR7PAYyYqOPeGVaFkJm4z50go6nfJwyLtbcL-uhVFK2eQz9WAu7b_8eCoX5qiswHF6eaayd9s4Z6XVWmt6xV1rR2Y0xzBmpMGqRMblhX6112wiGfSQoxq3JiMCubENWV-VH4ux3WHqh_97tyM4SCNJUllCfwxbanIC-xv6glkYVMjzVCzmCUnVpUdfKiZdY4wws2eAiSKPI60X5siMtNo9Uhm_Tmej5O2dYDCLz-ZLQyzsVcO1YFnmeAqDeq1fbTipj4IjPc4Sp-gLhKqkIk8if_C5igVjTDEWRYFmeBswYWpOkckIjpuX8XH03ViySCMdU7p0BpnJdKLOgQQuj2hRaY40hwqqhRsbQRyEV1JKNctBcTWsoUxFxo3XxTi0ZMPloYUiNFCEKRQ5uFv3-VhKbPzZOmsGf90yHfcc5FfoheksnIcY3vkMA7By8eL3Xjew2-i3W2Gr2Xm6hD3P5KvYrJw8ZJLZQl3BjvxMRvPZtf3UvgGTpM_M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+Generalized+Proportionate+Diffusion+LMS+Algorithm+for+Distributed+Estimation&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+II%2C+Express+briefs&rft.au=Zayyani%2C+Hadi&rft.au=Javaheri%2C+Amirhossein&rft.date=2021-04-01&rft.issn=1549-7747&rft.eissn=1558-3791&rft.volume=68&rft.issue=4&rft.spage=1552&rft.epage=1556&rft_id=info:doi/10.1109%2FTCSII.2020.3029780&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSII_2020_3029780 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-7747&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-7747&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-7747&client=summon |