A Robust Generalized Proportionate Diffusion LMS Algorithm for Distributed Estimation

This brief paper proposes a robust generalized proportionate diffusion Least Mean Square (LMS) algorithm for distributed estimation of a parameter vector in a network. The contribution of this brief is twofold. First, we generalize the concept of proportionate diffusion LMS by letting the gain matri...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems. II, Express briefs Ročník 68; číslo 4; s. 1552 - 1556
Hlavní autoři: Zayyani, Hadi, Javaheri, Amirhossein
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1549-7747, 1558-3791
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This brief paper proposes a robust generalized proportionate diffusion Least Mean Square (LMS) algorithm for distributed estimation of a parameter vector in a network. The contribution of this brief is twofold. First, we generalize the concept of proportionate diffusion LMS by letting the gain matrix to be non-diagonal instead of being a diagonal matrix. Second, to achieve robustness to impulsive noise while simultaneously maintaining a fast convergence property, we use a combination of Mean Square Deviation (MSD) and disturbance incurred in the adaptation step as the objective cost function. By simplifying and optimizing the proposed cost function, a closed form formula is obtained for the gain matrix in the general non-diagonal case. Simulation results demonstrate the efficiency of the proposed method in comparison to some other state-of-the-art algorithms.
AbstractList This brief paper proposes a robust generalized proportionate diffusion Least Mean Square (LMS) algorithm for distributed estimation of a parameter vector in a network. The contribution of this brief is twofold. First, we generalize the concept of proportionate diffusion LMS by letting the gain matrix to be non-diagonal instead of being a diagonal matrix. Second, to achieve robustness to impulsive noise while simultaneously maintaining a fast convergence property, we use a combination of Mean Square Deviation (MSD) and disturbance incurred in the adaptation step as the objective cost function. By simplifying and optimizing the proposed cost function, a closed form formula is obtained for the gain matrix in the general non-diagonal case. Simulation results demonstrate the efficiency of the proposed method in comparison to some other state-of-the-art algorithms.
Author Javaheri, Amirhossein
Zayyani, Hadi
Author_xml – sequence: 1
  givenname: Hadi
  orcidid: 0000-0001-6350-6541
  surname: Zayyani
  fullname: Zayyani, Hadi
  email: zayyani@qut.ac.ir
  organization: Department of Electrical and Computer Engineering, Qom University of Technology, Qom, Iran
– sequence: 2
  givenname: Amirhossein
  orcidid: 0000-0002-2812-0456
  surname: Javaheri
  fullname: Javaheri, Amirhossein
  email: javaheri_amirhossein@ee.sharif.edu
  organization: Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
BookMark eNp9kE1PAjEQhhujiYD-Ab1s4nmxH7TdHgkikmA0AudNd5nVkmWLbfegv94uEA8ePM1M5n3m4-2j88Y2gNANwUNCsLpfTZbz-ZBiiocMUyUzfIZ6hPMsZVKR8y4fqVTKkbxEfe-3OIowoz20Hidvtmh9SGbQgNO1-YZN8urs3rpgbKMDJA-mqlofi2TxvEzG9bt1Jnzsksq62PPBmaINkZr6YHa6o67QRaVrD9enOEDrx-lq8pQuXmbzyXiRllTxkBJRQAEMNC05V0LBpuCcA-day4rHUvICi5EUQhRKxKckYwJvSq4rmimo2ADdHefunf1swYd8a1vXxJU55VhwpVhGoio7qkpnvXdQ5aUJhzuD06bOCc47E_ODiXlnYn4yMaL0D7p38Uf39T90e4QMAPwCihJFccZ-ADkWf_w
CODEN ICSPE5
CitedBy_id crossref_primary_10_1109_TCSII_2021_3087535
crossref_primary_10_1109_TCSII_2021_3123055
crossref_primary_10_1109_TCSII_2022_3230831
crossref_primary_10_1109_TCSII_2023_3328779
crossref_primary_10_1109_JSEN_2024_3478332
crossref_primary_10_1109_TCSII_2023_3323871
crossref_primary_10_1109_ACCESS_2024_3375757
crossref_primary_10_1109_LCOMM_2025_3550286
crossref_primary_10_34248_bsengineering_1238543
crossref_primary_10_1109_TSIPN_2023_3277591
crossref_primary_10_1109_LSP_2022_3167897
crossref_primary_10_1080_00207721_2024_2409850
crossref_primary_10_1109_TCSII_2021_3127464
crossref_primary_10_1109_TCSII_2023_3239644
crossref_primary_10_1109_LSENS_2024_3507579
crossref_primary_10_1109_TCSII_2022_3215996
crossref_primary_10_1007_s00034_022_02140_1
crossref_primary_10_1109_LSP_2022_3169087
crossref_primary_10_1109_TCSII_2022_3144195
crossref_primary_10_1007_s00034_022_02072_w
crossref_primary_10_1109_TCSII_2022_3224737
crossref_primary_10_1109_TCSII_2024_3364090
crossref_primary_10_1109_TSIPN_2025_3599781
Cites_doi 10.1214/aoms/1177729893
10.1109/TCSII.2016.2548182
10.1016/j.dsp.2019.102589
10.1109/TSP.2014.2302731
10.1016/j.sigpro.2010.05.015
10.1016/j.sigpro.2016.08.023
10.1016/j.sigpro.2019.06.003
10.1109/LCOMM.2016.2550589
10.1109/TSP.2008.917383
10.1109/TCSII.2015.2435631
10.1109/TCSII.2018.2811729
10.1145/509907.509932
10.1016/j.sigpro.2020.107497
10.1109/TCSII.2020.3004507
10.1016/j.dsp.2020.102767
10.1109/BlackSeaCom.2018.8433640
10.1016/j.sigpro.2016.06.011
10.1016/j.dsp.2017.10.022
10.1109/89.861368
10.1109/TSP.2012.2232663
10.1561/2200000051
10.1109/TSP.2017.2703664
10.1109/TSP.2012.2198468
10.1109/TSP.2009.2033729
10.1016/j.sigpro.2014.07.026
10.1109/TCSII.2017.2720181
10.1109/TSP.2011.2106123
10.1016/j.sigpro.2016.03.022
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCSII.2020.3029780
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3791
EndPage 1556
ExternalDocumentID 10_1109_TCSII_2020_3029780
9219208
Genre orig-research
GroupedDBID 0R~
29I
4.4
5VS
6IK
6J9
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PZZ
RIA
RIE
RNS
RXW
TAE
TAF
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-16bebe3ea2c55969edb555e55aa7f59ed75b0647666b9678073360dc5af289ef3
IEDL.DBID RIE
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000634501300099&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-7747
IngestDate Sun Oct 05 00:31:16 EDT 2025
Sat Nov 29 02:23:13 EST 2025
Tue Nov 18 22:31:17 EST 2025
Wed Aug 27 02:50:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-16bebe3ea2c55969edb555e55aa7f59ed75b0647666b9678073360dc5af289ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2812-0456
0000-0001-6350-6541
PQID 2506599381
PQPubID 85412
PageCount 5
ParticipantIDs crossref_citationtrail_10_1109_TCSII_2020_3029780
crossref_primary_10_1109_TCSII_2020_3029780
proquest_journals_2506599381
ieee_primary_9219208
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems. II, Express briefs
PublicationTitleAbbrev TCSII
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref10
ref2
ref1
ref17
ref16
ref19
ref18
haykin (ref27) 2013
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
chen (ref11) 2009
References_xml – ident: ref30
  doi: 10.1214/aoms/1177729893
– ident: ref9
  doi: 10.1109/TCSII.2016.2548182
– ident: ref22
  doi: 10.1016/j.dsp.2019.102589
– ident: ref6
  doi: 10.1109/TSP.2014.2302731
– start-page: 3125
  year: 2009
  ident: ref11
  article-title: Sparse LMS for system identification
  publication-title: Proc IEEE Int Conf Acoust Speech Signal Process (ICASSP)
– ident: ref12
  doi: 10.1016/j.sigpro.2010.05.015
– ident: ref19
  doi: 10.1016/j.sigpro.2016.08.023
– ident: ref20
  doi: 10.1016/j.sigpro.2019.06.003
– ident: ref28
  doi: 10.1109/LCOMM.2016.2550589
– ident: ref2
  doi: 10.1109/TSP.2008.917383
– year: 2013
  ident: ref27
  publication-title: Adaptive Filter Theory
– ident: ref13
  doi: 10.1109/TCSII.2015.2435631
– ident: ref18
  doi: 10.1109/TCSII.2018.2811729
– ident: ref29
  doi: 10.1145/509907.509932
– ident: ref8
  doi: 10.1016/j.sigpro.2020.107497
– ident: ref21
  doi: 10.1109/TCSII.2020.3004507
– ident: ref26
  doi: 10.1016/j.dsp.2020.102767
– ident: ref25
  doi: 10.1109/BlackSeaCom.2018.8433640
– ident: ref14
  doi: 10.1016/j.sigpro.2016.06.011
– ident: ref7
  doi: 10.1016/j.dsp.2017.10.022
– ident: ref15
  doi: 10.1109/89.861368
– ident: ref5
  doi: 10.1109/TSP.2012.2232663
– ident: ref1
  doi: 10.1561/2200000051
– ident: ref17
  doi: 10.1109/TSP.2017.2703664
– ident: ref4
  doi: 10.1109/TSP.2012.2198468
– ident: ref3
  doi: 10.1109/TSP.2009.2033729
– ident: ref24
  doi: 10.1016/j.sigpro.2014.07.026
– ident: ref10
  doi: 10.1109/TCSII.2017.2720181
– ident: ref16
  doi: 10.1109/TSP.2011.2106123
– ident: ref23
  doi: 10.1016/j.sigpro.2016.03.022
SSID ssj0029032
Score 2.4464927
Snippet This brief paper proposes a robust generalized proportionate diffusion Least Mean Square (LMS) algorithm for distributed estimation of a parameter vector in a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1552
SubjectTerms Algorithms
Circuits and systems
Cost function
Diffusion
diffusion LMS
Distributed estimation
disturbance
Estimation
impulsive noise
Indexes
Parameter estimation
proportionate
robust
Robustness
Sensors
Signal processing algorithms
Title A Robust Generalized Proportionate Diffusion LMS Algorithm for Distributed Estimation
URI https://ieeexplore.ieee.org/document/9219208
https://www.proquest.com/docview/2506599381
Volume 68
WOSCitedRecordID wos000634501300099&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3791
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029032
  issn: 1549-7747
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwGG2QeNCDv9CIounBm07GaFd6JAiRBAkRMNyWtWt1CYJhw4N_vV-7sZBoTLxtWZssfWv7ve773kPopkWZJ6Qmjs8Id4gMI4dHQFZ05AmvSVpK2GTMlwEbDluzGR-V0F1RC6OUssln6t5c2n_50VKuzVFZncP08kxl7w5jflarVZAr7lozMqM4BhEjYZsCGZfXJ51xvw9U0AOGaryajATk1iZkXVV-LMV2f-kd_u_NjtBBHkfidgb8MSqpxQna31IXrKBpGz8vxTpJca4tHX-pCI-MLcLKngCmCj_EWq_NgRkePI1xe_66XMXp2zuGUBaeJZkdFvTqwkqQFTmeommvO-k8OrmLgiM9TlOn4QsAqqlCTwJ78LmKBKVUURqGTFO4ZVSYilPgMYLD1mVcHH03kjTUQMaUbp6h8mK5UOcIM5eHpKE0B5JDBNHCjYwcDoArCSGaVlFjM6yBzCXGjdPFPLBUw-WBhSIwUAQ5FFV0W_T5yAQ2_mxdMYNftMzHvYpqG_SCfA4mAQR3PoXwq9W4-L3XJdrzTIaKzcOpoXK6WqsrtCs_0zhZXdvP6xvA58yD
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4xaKIe_IVGFLUHbzoZo93okSAEIhAiYLgta9cqCYKB4cG_3tcyCInGxNuWtcnSb23f1733fQC3ZRZ4Qmrq-AHlDpVR7PAYyYqOPeGVaFkJm4z50go6nfJwyLtbcL-uhVFK2eQz9WAu7b_8eCoX5qiswHF6eaayd9s4Z6XVWmt6xV1rR2Y0xzBmpMGqRMblhX6112wiGfSQoxq3JiMCubENWV-VH4ux3WHqh_97tyM4SCNJUllCfwxbanIC-xv6glkYVMjzVCzmCUnVpUdfKiZdY4wws2eAiSKPI60X5siMtNo9Uhm_Tmej5O2dYDCLz-ZLQyzsVcO1YFnmeAqDeq1fbTipj4IjPc4Sp-gLhKqkIk8if_C5igVjTDEWRYFmeBswYWpOkckIjpuX8XH03ViySCMdU7p0BpnJdKLOgQQuj2hRaY40hwqqhRsbQRyEV1JKNctBcTWsoUxFxo3XxTi0ZMPloYUiNFCEKRQ5uFv3-VhKbPzZOmsGf90yHfcc5FfoheksnIcY3vkMA7By8eL3Xjew2-i3W2Gr2Xm6hD3P5KvYrJw8ZJLZQl3BjvxMRvPZtf3UvgGTpM_M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+Generalized+Proportionate+Diffusion+LMS+Algorithm+for+Distributed+Estimation&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+II%2C+Express+briefs&rft.au=Zayyani%2C+Hadi&rft.au=Javaheri%2C+Amirhossein&rft.date=2021-04-01&rft.issn=1549-7747&rft.eissn=1558-3791&rft.volume=68&rft.issue=4&rft.spage=1552&rft.epage=1556&rft_id=info:doi/10.1109%2FTCSII.2020.3029780&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSII_2020_3029780
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-7747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-7747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-7747&client=summon